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Notation

g : a complex semisimple Lie algebra
h : a CSA of g
∆ ⊂ Π : roots and simple roots
g∨ : Lie algebra dual to g (e.g., sp (2n,C)∨ = so (2n + 1,C)
Ng : set of nilpotent orbits of G = Ad(g) in g (a finite set partially ordered via
inclusion of closures).
Sg: the set of special nilpotent orbits (unique dense orbits in associated varieties of
primitive ideals of regular integral infinitesimal character)
W : the Weyl group of g (and g∨).

Goal: Relate nilpotent orbits and Weyl group reps via common combinatorial parameters.

Paradigm

Macdonald rep = jWWΓ
(sgn(WΓ))
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Inclusion and Induction of Nilpotent Orbits

Let Ol be a nilpotent orbit in a Levi subalgebra l of g.

There are two basic ways of attaching to the datum (l,Ol) a nilpotent orbit in g.

Inclusion of Nilpotent Orbits

incgl (Ol) = G · Ol = {X ∈ g | X = g · x for some g ∈ G , x ∈ Ol}

Induction of Nilpotent Orbits Let p = l + n be any extension of l to a parabolic
subalgebra of g.

indg
l (Ol) = unique dense orbit in G · (Ol + n)
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Bala-Carter

Def. A nilpotent orbit is distinguished if it is does not meet any proper Levi subalgebra.

Theorem

(Bala-Carter) Ng is in a 1:1 correspondence with G-conjugacy classes of pairs (l,Ol)
where l is a Levi subalgebra of g and Ol is a distinguished orbit in l.

Parameterizing Conjugacy Classes of Levis

Fact:
G -conjugacy classes of Levis 1 : 1←−−−−→ 2Π/W

Let Γ ⊂ Π and set

WΓ = 〈sα〉α∈Γ ⊂W

∆Γ = WΓ · Γ

lΓ = h +
∑
α∈∆Γ

gα
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Parameterizing distinguished orbits

Let γ ⊂ Γ such that

#∆γ + #Γ = #
{
α ∈ ∆+

Γ | α = α1 + α2 ; α1 ∈ ∆γ , α2 ∈ Γ \ γ
}

(*)

Then

Fact: ind lG
lγ

(0) is a distinguished orbit in lΓ, and all distinguished orbits arise in this
fashion.

Definition

Let Γ be any set of simple roots (a linearly indep. and mutually obtuse set). A subset
γ ⊂ Γ will called distinguished if (*) is satisfied.
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Combinatorial Bala-Carter

Combinatorial Bala-Carter

Ng 1 : 1←−−−−→ {(Γ, γ) | γ ⊂ Γ ⊂ Π satisfying (*)} /W

O(Γ,γ) ≡ incglΓ

(
ind lΓ

lγ
(0)
)

Set
BCg = {(Γ, γ) | γ ⊂ Γ ⊂ Π satisfying (*)} /W
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Orbit Duality for sln

Let g = sl (n,C). Then

Ng 1 : 1←−−−−→ {partitions of n}

p 7−→ Op = orbit of


Jp1 0 · · · 0

0 Jp2 0
...

... 0
. . . 0

0 · · · 0 Jpk

 , Jpi =


0 1 0 0

0
. . .

. . . 0
...

. . .
. . . 1

0 · · · 0 0



Theorem

(Gerstenhaber) The partition transpose map t : P (n) −→ P (n) induces an order
reversing involution

d : Nsln −→ Nsln : Op −→ Opt

on the set of nilpotent orbits of sl (n,C).
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Spaltenstein Duality

Theorem

(Spaltenstein) Let g be a simple Lie algebra. Then there is a unique map d : Ng −→ Ng

such that

d2 (O) ≤ O
d (incgl (Oprin)) = indg

l (0).

image (O) = special nilpotent orbits
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Barbasch-Vogan Duality

Consider the map ηg : Ng −→ Ng∨ defined by

O 3 x −→ {x , h, y} −→ 1

2
h = µO ∈

(
h∨
)∗ −→ JO = max

{
Prim

(
g∨
)
µO

}
−→ AssocVar

(
U
(
g∨
)
/JO

)
unique dense orbit
−−−−−−−−−−−−−−−−→

ηg (O) ∈ Ng∨

Theorem

(Barbasch-Vogan, 1985) The map ηg has the following properties:

If O1 ⊂ O2 then ηg (O2) ⊂ ηg (O1)

ηg ◦ ηg∨ ◦ ηg = ηg

Image (ηg) = {special nilpotent orbits in g∨}
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The Barbasch-Vogan Formula

Theorem

(Barbasch-Vogan) If Ol∨ ∈ Nl∨ is an orbit in a Levi subalgebra l∨ of g∨, then

ηg∨
(
incg

∨

l∨ (Ol∨)
)

= indg
l (ηl∨ (Ol∨))
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Variation 1

Let
BCg∨ =

{(
Γ∨, γ∨

)
| γ∨ ⊂ Γ∨ ⊂ Πg∨ satisfying (*)

}
/W

and define Φ : BCg∨ −→ Sg by

Φ
(
Γ∨, γ∨

)
= ηg∨

(
incg

∨

lΓ∨

(
ind

lΓ∨
lγ∨ (0)

))
= indg

lΓ

(
ηlΓ∨

(
ind

lΓ∨
lγ∨ (0)

))
= indg

lΓ

(
Olγ ,prin

)
=⇒ An orbit-intrinsic characterization of special orbits (no reference to primitive ideals or
special representations of Weyl groups)

N.B. use of dual parameters
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Variation 2

Weyl group analogs

Oprin ←→ 1W

0g ←→ sgn (W )

indg
lΓ

() ←→ jWWΓ
() (truncated induction)

ηg ←→ εW
(

Lusztig’s involution of Ŵ w/ twist by sgn(W )
)

Φ : BCg∨ −→ Sg ;
(
Γ∨, γ∨

)
−→ ηg∨

(
incg

∨

lΓ∨

(
ind

lΓ∨
lγ∨ (0)

))
↓

Ψ : BCg∨ −→ Ŵspec :
(
Γ∨, γ∨

)
−→ jWWΓ

(
εWΓ∨

(
j
WΓ∨
Wγ∨ (sgn (Wγ∨))

))
=⇒ an alternative W -intrinsic characterization of special representations (no generic
degree polynomials required).

Birne Binegar (Oklahoma State University) Variations on a Formula of Barbasch and Vogan
Special Session on Lie Groups and Automorphic Forms Canadian Mathematical Society Winter Meeting Windsor, Canada December 6, 2009 12

/ 13



Variation 3

Let
Πe = Π ∪ {lowest root}

Set
BCe,g = {(Γ, γ) | Γ ⊂ Πe , γ ⊂ Γ satisfying (*)}

Theorem

Ψ̃ : BCe,g∨ −→ Ŵ :
(
Γ∨, γ∨

)
−→ jWWΓ

(
εWΓ∨

(
j
WΓ∨
Wγ∨ (sgn (Wγ∨))

))
maps BCe,g∨ onto Ŵorbit , where

Ŵorbit =
{
σ ∈ Ŵ | σ ∼

(
O, 1A(O)

)}
=⇒ a W -intrinsic characterization of Springer representations.
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