Variations on a Formula of Barbasch and Vogan

Birne Binegar

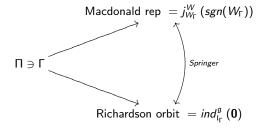
Department of Mathematics Oklahoma State University Stillwater, OK 74078, USA

Special Session on Lie Groups and Automorphic Forms Canadian Mathematical Society Winter Meeting Windsor, Canada December 6, 2009

Notation

- g : a complex semisimple Lie algebra
- \bullet \mathfrak{h} : a CSA of \mathfrak{g}
- $\Delta \subset \Pi$: roots and simple roots
- \mathfrak{g}^{\vee} : Lie algebra dual to \mathfrak{g} (e.g., $\mathfrak{sp}(2n,\mathbb{C})^{\vee} = \mathfrak{so}(2n+1,\mathbb{C})$
- $\mathcal{N}_{\mathfrak{g}}$: set of nilpotent orbits of $G = Ad(\mathfrak{g})$ in \mathfrak{g} (a finite set partially ordered via inclusion of closures).
- $S_{\mathfrak{g}}$: the set of special nilpotent orbits (unique dense orbits in associated varieties of primitive ideals of regular integral infinitesimal character)
- W : the Weyl group of \mathfrak{g} (and \mathfrak{g}^{\vee}).

Goal: Relate nilpotent orbits and Weyl group reps via common combinatorial parameters. **Paradigm**



Let $\mathcal{O}_{\mathfrak{l}}$ be a nilpotent orbit in a Levi subalgebra \mathfrak{l} of \mathfrak{g} .

There are two basic ways of attaching to the datum $(\mathfrak{l}, \mathcal{O}_{\mathfrak{l}})$ a nilpotent orbit in \mathfrak{g} .

Inclusion of Nilpotent Orbits

$$\mathit{inc}_{\iota}^{\mathfrak{g}}(\mathcal{O}_{\mathfrak{l}}) = G \cdot \mathcal{O}_{\mathfrak{l}} = \{ X \in \mathfrak{g} \mid X = g \cdot x \text{ for some } g \in G \text{ , } x \in \mathcal{O}_{\mathfrak{l}} \}$$

Induction of Nilpotent Orbits Let $\mathfrak{p} = \mathfrak{l} + \mathfrak{n}$ be any extension of \mathfrak{l} to a parabolic subalgebra of \mathfrak{g} .

$$ind_{\mathfrak{l}}^{\mathfrak{g}}(\mathcal{O}_{\mathfrak{l}}) =$$
unique dense orbit in $G \cdot (\mathcal{O}_{\mathfrak{l}} + \mathfrak{n})$

Def. A nilpotent orbit is distinguished if it is does not meet any proper Levi subalgebra.

Theorem

(Bala-Carter) $\mathcal{N}_{\mathfrak{g}}$ is in a 1:1 correspondence with G-conjugacy classes of pairs $(\mathfrak{l}, \mathcal{O}_{\mathfrak{l}})$ where \mathfrak{l} is a Levi subalgebra of \mathfrak{g} and $\mathcal{O}_{\mathfrak{l}}$ is a distinguished orbit in \mathfrak{l} .

Parameterizing Conjugacy Classes of Levis

Fact:

G-conjugacy classes of Levis
$$(1:1)$$
 $2^{\Pi}/W$

Let $\Gamma\subset\Pi$ and set

$$\begin{split} \mathcal{W}_{\Gamma} &= \left\langle s_{\alpha} \right\rangle_{\alpha \in \Gamma} \subset \mathcal{W} \\ \Delta_{\Gamma} &= \mathcal{W}_{\Gamma} \cdot \Gamma \\ \mathfrak{l}_{\Gamma} &= \mathfrak{h} + \sum_{\alpha \in \Delta_{\Gamma}} \mathfrak{g}_{\alpha} \end{split}$$

Let $\gamma \subset \Gamma$ such that

$$\#\Delta_{\gamma} + \#\Gamma = \#\left\{\alpha \in \Delta_{\Gamma}^{+} \mid \alpha = \alpha_{1} + \alpha_{2} \quad ; \quad \alpha_{1} \in \Delta_{\gamma} \ , \ \alpha_{2} \in \Gamma \setminus \gamma\right\}$$
(*)

Then

Fact: $ind_{I_{\gamma}}^{I_{G}}(\mathbf{0})$ is a distinguished orbit in I_{Γ} , and all distinguished orbits arise in this fashion.

Definition

Let Γ be any set of simple roots (a linearly indep. and mutually obtuse set). A subset $\gamma \subset \Gamma$ will called **distinguished** if (*) is satisfied.

Combinatorial Bala-Carter

$$\begin{array}{ccc} \mathcal{N}_{\mathfrak{g}} & \underbrace{1:1}_{} & \left\{ (\Gamma,\gamma) \mid \gamma \subset \Gamma \subset \Pi & \text{satisfying (*)} \right\} / W \\ \\ \mathcal{O}_{(\Gamma,\gamma)} \equiv \textit{inc}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}} \left(\textit{ind}_{\mathfrak{l}_{\gamma}}^{\mathfrak{l}_{\Gamma}} \left(\boldsymbol{0} \right) \right) \end{array}$$

Set

$$\mathcal{BC}_{\mathfrak{g}} = \left\{ \left(\mathsf{\Gamma}, \gamma \right) \mid \gamma \subset \mathsf{\Gamma} \subset \mathsf{\Pi} \quad \mathsf{satisfying} \ (\texttt{*}) \right\} / W$$

Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. Then

 $\mathcal{N}_{\mathfrak{g}} \xrightarrow{1:1} \{ \text{partitions of } n \}$

$$\mathbf{p} \longmapsto \mathcal{O}_{\mathbf{p}} = \text{orbit of} \left(\begin{array}{cccc} J_{\rho_{1}} & 0 & \cdots & 0 \\ 0 & J_{\rho_{2}} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & J_{\rho_{k}} \end{array} \right) \qquad , \qquad J_{\rho_{i}} = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 \end{array} \right)$$

Theorem

(Gerstenhaber) The partition transpose map $t:\mathcal{P}\left(n\right)\longrightarrow\mathcal{P}\left(n\right)$ induces an order reversing involution

$$d: \mathcal{N}_{\mathfrak{sl}_n} \longrightarrow \mathcal{N}_{\mathfrak{sl}_n}: \quad \mathcal{O}_{\mathbf{p}} \longrightarrow \mathcal{O}_{\mathbf{p}^t}$$

on the set of nilpotent orbits of $\mathfrak{sl}(n,\mathbb{C})$.

Theorem

(Spaltenstein) Let g be a simple Lie algebra. Then there is a unique map $d: \mathcal{N}_g \longrightarrow \mathcal{N}_g$ such that

- $d^2(\mathcal{O}) \leq \mathcal{O}$
- $d(inc_{\iota}^{\mathfrak{g}}(\mathcal{O}_{prin})) = ind_{\iota}^{\mathfrak{g}}(\mathbf{0}).$
- $image(\mathcal{O}) = special nilpotent orbits$

Consider the map $\eta_{\mathfrak{g}}: \mathcal{N}_{\mathfrak{g}} \longrightarrow \mathcal{N}_{\mathfrak{g}^{\vee}}$ defined by

$$\mathcal{O} \ni x \longrightarrow \{x, h, y\} \longrightarrow \frac{1}{2}h = \mu_{\mathcal{O}} \in \left(\mathfrak{h}^{\vee}\right)^{*} \longrightarrow J_{\mathcal{O}} = \max\left\{ Prim\left(\mathfrak{g}^{\vee}\right)_{\mu_{\mathcal{O}}} \right\}$$
$$\longrightarrow AssocVar\left(U\left(\mathfrak{g}^{\vee}\right)/J_{\mathcal{O}}\right) \quad \underbrace{\text{unique dense orbit}}_{} \qquad \eta_{\mathfrak{g}}\left(\mathcal{O}\right) \in \mathcal{N}_{\mathfrak{g}^{\vee}}$$

Theorem

(Barbasch-Vogan, 1985) The map $\eta_{\mathfrak{g}}$ has the following properties:

- If $\mathcal{O}_1 \subset \overline{\mathcal{O}_2}$ then $\eta_\mathfrak{g}\left(\mathcal{O}_2\right) \subset \overline{\eta_\mathfrak{g}\left(\mathcal{O}_1\right)}$
- $\bullet \ \eta_{\mathfrak{g}} \circ \eta_{\mathfrak{g}^{\vee}} \circ \eta_{\mathfrak{g}} = \eta_{\mathfrak{g}}$
- Image $(\eta_{\mathfrak{g}}) = \{ \text{special nilpotent orbits in } \mathfrak{g}^{\vee} \}$

Theorem

(Barbasch-Vogan) If $\mathcal{O}_{\mathfrak{l}^{\vee}} \in \mathcal{N}_{\mathfrak{l}^{\vee}}$ is an orbit in a Levi subalgebra \mathfrak{l}^{\vee} of \mathfrak{g}^{\vee} , then

$$\eta_{\mathfrak{g}^{\vee}}\left(\mathit{inc}_{\mathfrak{l}^{\vee}}^{\mathfrak{g}^{\vee}}\left(\mathcal{O}_{\mathfrak{l}^{\vee}}\right)\right)=\mathit{ind}_{\mathfrak{l}}^{\mathfrak{g}}\left(\eta_{\mathfrak{l}^{\vee}}\left(\mathcal{O}_{\mathfrak{l}^{\vee}}\right)\right)$$

Let

$$\mathcal{BC}_{\mathfrak{g}^{\vee}} = \left\{ \left(\mathsf{\Gamma}^{\vee}, \gamma^{\vee} \right) \mid \gamma^{\vee} \subset \mathsf{\Gamma}^{\vee} \subset \mathsf{\Pi}_{\mathfrak{g}^{\vee}} \quad \text{satisfying (*)} \right\} / W$$

and define $\Phi:\mathcal{BC}_{\mathfrak{g}^\vee}\longrightarrow \mathcal{S}_\mathfrak{g}$ by

$$\begin{split} \Phi\left(\boldsymbol{\Gamma}^{\vee},\boldsymbol{\gamma}^{\vee}\right) &= \eta_{\mathfrak{g}^{\vee}}\left(\mathit{inc}_{\mathfrak{l}_{\Gamma^{\vee}}}^{\mathfrak{g}^{\vee}}\left(\mathit{ind}_{\mathfrak{l}_{\gamma^{\vee}}}^{\mathfrak{l}_{\Gamma^{\vee}}}\left(\boldsymbol{0}\right)\right)\right) \\ &= \mathit{ind}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}}\left(\eta_{\mathfrak{l}_{\Gamma^{\vee}}}\left(\mathit{ind}_{\mathfrak{l}_{\gamma^{\vee}}}^{\mathfrak{l}_{\Gamma^{\vee}}}\left(\boldsymbol{0}\right)\right)\right) \\ &= \mathit{ind}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{l}_{\gamma},\mathit{prin}}\right) \end{split}$$

 \Longrightarrow An orbit-intrinsic characterization of special orbits (no reference to primitive ideals or special representations of Weyl groups)

N.B. use of dual parameters

Variation 2

Weyl group analogs

$$\begin{array}{rcl} \mathcal{O}_{\textit{prin}} & \longleftrightarrow & \mathbf{1}_{W} \\ \mathbf{0}_{\mathfrak{g}} & \longleftrightarrow & \textit{sgn}(W) \\ \textit{ind}_{l_{\Gamma}}^{\mathfrak{g}}() & \longleftrightarrow & j_{W_{\Gamma}}^{W}() & (\textit{truncated induction}) \\ \eta_{\mathfrak{g}} & \longleftrightarrow & \varepsilon_{W} & \left(\textit{Lusztig's involution of } \widehat{W} \text{ w/ twist by } \textit{sgn}(W)\right) \end{array}$$

$$\begin{array}{lll} \Phi & : & \mathcal{BC}_{\mathfrak{g}^{\vee}} \longrightarrow \mathcal{S}_{\mathfrak{g}} & ; & \left(\Gamma^{\vee}, \gamma^{\vee} \right) \longrightarrow \eta_{\mathfrak{g}^{\vee}} \left(inc_{l_{\Gamma^{\vee}}}^{\mathfrak{g}^{\vee}} \left(ind_{l_{\gamma^{\vee}}}^{l_{\Gamma^{\vee}}} \left(\mathbf{0} \right) \right) \right) \\ \downarrow \\ \Psi & : & \mathcal{BC}_{\mathfrak{g}^{\vee}} \longrightarrow \widehat{W}_{spec} & : & \left(\Gamma^{\vee}, \gamma^{\vee} \right) \longrightarrow j_{W_{\Gamma}}^{W} \left(\varepsilon_{W_{\Gamma^{\vee}}} \left(j_{W_{\gamma^{\vee}}}^{W_{\Gamma^{\vee}}} \left(sgn \left(W_{\gamma^{\vee}} \right) \right) \right) \right) \end{array}$$

 \implies an alternative *W*-intrinsic characterization of special representations (no generic degree polynomials required).

Let

 $\Pi_e = \Pi \cup \{ \text{lowest root} \}$

Set

$$\mathcal{BC}_{e,\mathfrak{g}} = \{(\Gamma,\gamma) \mid \Gamma \subset \Pi_e \ , \ \gamma \subset \Gamma \ \text{ satisfying (*)} \}$$

Theorem

$$\widetilde{\Psi}: \mathcal{BC}_{e,\mathfrak{g}^{\vee}} \longrightarrow \widehat{W}: (\Gamma^{\vee}, \gamma^{\vee}) \longrightarrow j_{W_{\Gamma}}^{W} \left(\varepsilon_{W_{\Gamma^{\vee}}} \left(j_{W_{\gamma^{\vee}}}^{W_{\Gamma^{\vee}}} (sgn(W_{\gamma^{\vee}}))\right)\right)$$

maps $\mathcal{BC}_{e,\mathfrak{g}^{\vee}}$ onto $\widehat{W}_{\textit{orbit}}$, where

$$\widehat{W}_{\textit{orbit}} = \left\{ \sigma \in \widehat{W} \mid \sigma \sim \left(\mathcal{O}, \mathbf{1}_{\mathcal{A}(\mathcal{O})} \right)
ight\}$$

 \implies a *W*-intrinsic characterization of Springer representations.