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1. The plot so far

Last time I introduced

• generalized Selberg integrals as integrals of the form

(1) In,λ,r,s,κ =
∫

Ωn

Φ (x)

(
n∏

i=1

xr−1
i (1− xi)

s−1

) ∏
1≤i<j≤n

|xi − xj |2κ

 dx1 · · · dxn

Φ being some symmetric polynomials on Rn and Ωn some fundamental domain for the action the
symmetric group Sn.

• Jack symmetric functions J (α)
λ as a particular basis of symmetric polynomials uniquely defined

by the requirements
–
〈
J

(α)
µ , J

(α)
λ

〉
α

= 0 if λ 6= µ (orthogonality) where the inner product 〈·, ·〉α is defined by

〈pλ, pµ〉 = δλ,µα
|λ|zλ

z(1m12m2 ··· ) ≡
n∏

i=1

imi (mi)!

= order of the centralizer in Sn of a cycle of type λ

– J
(α)
λ =

∑
µ≤λ vλµmµ (triagularity)

– If |λ| = d, then vλ,(1d) = d!
The Jack symmetric functions are eigenfunctions of the following differential operator

(2) D (α) =
α

2

n∑
i=1

x2
i

∂2

∂x2
i

+
∑
i 6=j

x2
i

xi − xj

∂

∂xi

with eigenvalue

(3) eλ (α) =
α

2

m∑
i=1

λi (λi − 1)−
m∑

i=1

(i− 1)λi + (n− 1) |λ|

• Generalized hypergeometric functions

(4) pF
(a)
q (a1, . . . , ap; b1, . . . , bq; t) =

∞∑
d=0

∑
|λ|=d

[a1]
(α)
λ · · · [ap]

(α)
λ

[b1]
(α)
λ · · · [bq](α)

λ d!
C

(α)
λ (t)

where

C
(α)
λ (t) = α|λ| |λ|!J (α)

λ (t)

[a](α)
λ =

`(λ)∏
i=1

(
a− 1

α
(i− 1)

)
λi

1
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2. Kaneko’s Generalized Selberg Integral

In this talk we shall be considering the generalized Selberg integral studied by Kaneko

Sn,m (λ1, λ2, λ, µ; t1, . . . , tm)(6)

=
∫

[0,1]n

 ∏
l≤i≤n
i≤k≤m

(xi − tk)µ


 ∏

1≤i≤n

xλ1
i (1− xi)

λ2

 ∏
1≤i<j≤n

|xi − xj |λ
 dx1 · · · dxn

for which the original Selberg integral corresponds to the special case of Sn,0 (λ1, λ2, λ, 0;0).

3. Holonomic System for Sn,m

Let us denote by Φ the integrand of (6):

Φ =

 ∏
l≤i≤n
i≤k≤m

(xi − tk)µ


 ∏

1≤i≤n

xλ1
i (1− xi)

λ2

 ∏
1≤i<j≤n

|xi − xj |λ


let ω be the logarithmic 1-form1

ω = d log Φ

and let ∇ω be the covariant differentiation defined by

∇αϕ = dϕ+ ω ∧ ϕ

for any smooth (n− 1)-form ϕ. One has

d (Φϕ) = (dΦ) ∧ ϕ+ Φ (dϕ)

= Φ
(
dϕ+

1
Φ

(dΦ) ∧ ϕ
)

= Φ (∇ωϕ)

and so by Stokes theorem, and the fact that Φ vanishes on each face of the cube [0, 1]n,

(*)
∫

[0,1]n
Φ∇ωϕ =

∫
[0,1]n

d (Φϕ) =
∫

∂([01,]n)

Φϕ = 0

as long as the left hand side exists.

Kaneko utilizes the identity (*) for three easy choices of (n− 1)-forms ϕ and to provide identities certain
derivatives of In,m. Let us denote by ∗dxi the (n− 1)-form

∗dxi = (−1)i−1
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

1Explicitly,

ω = d log

0BB@
 

nY
i=1

xλ1
i (1 − xi)

λ2

!0@ Y
1≤i<j≤n

|xi − xj |λ
1A
0BB@ Y

1≤i≤n
1≤k≤m

(xi − tk)µ

1CCA
1CCA

=
1

Φ

nX
i=1

0@λ1

xi
Φ +

λ2

1 − xi
Φ +

i−1X
j=1

−λ

xj − xi
Φ +

nX
j=i+1

λ

xi − xj
Φ +

X
1≤k≤m

µ

xi − tk
Φ

1A dxi
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and put

ϕ0 =
n∑

i=1

∗dxi

ϕ1 =
n∑

i=1

xi
∗dxi

ψk =
n∑

i=1

(xi − tk)−1 ∗dxi , 1 ≤ k ≤ m

The covariant differentiations of these forms are

(3) ∇ωϕ0 =

λ1

n∑
i=1

x−1
i − λ2

n∑
i=1

(1− xi)
−1 + µ

∑
1≤i≤n
1≤k≤m

(xi − tk)−1

 θ

(4) ∇ωϕ1 =

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
− λ2

n∑
i=1

(1− xi)
−1 + µ

∑
1≤i≤n
1≤k≤m

tk
xi − tk

 θ

∇ωψk =

(µ− 1)
n∑

i=1

(xi − tk)−2 − λ
∑

1≤i<j≤n

((xi − tk) (xj − tk)) + λ1t
−1
k(5)

·

(
n∑

i=1

(xi − tk)−1 −
n∑

i=1

x−1
i

)
− λ2 (1− tk)−1

(
n∑

i=1

(1− xi)
−1 +

n∑
i=1

(xi − tk)−1

)

+µ
m∑

l=1
l 6=m

(tk − tl)
−1

(
n∑

i=1

(xi − tk)−1 −
n∑

i=1

(xi − tl)
−1

) θ
where θ denotes the volume n-form: θ = dx1 ∧ · · · ∧ dxn. For n-forms ξ, η, we write ξ ∼ η if ξ − η = ∇ωϕ
for some (n− 1)-form ϕ. It follows from (3) and (4) that

∇ω (ϕ0 − ϕ1) =

λ1

n∑
i=1

x−1
i − n

(
1 + λ1 + λ2 +mµ+

n− 1
2

λ

)
+ µ

∑
1≤i≤n
1≤k≤m

1− tk
xi − tk

 θ
or [

λ1

n∑
i=1

x−1
i

]
θ =

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
− µ

∑
1≤i≤n
1≤k≤m

1− tk
xi − tk

 θ +∇ω (ϕ0 − ϕ1)

[
λ2

n∑
i=1

(1− xi)
−1

]
θ ∼

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
+ µ

∑
1≤i≤n
1≤k≤m

tk
xi − tk

 θ
And (4) leads directly to

λ2

n∑
i=1

(1− xi)
−1 =

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
+ µ

∑
1≤i≤n
1≤k≤m

tk
xi − tk

 θ −∇ωϕ1
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Substituting these into (5), we obtain

∇ωψk ∼

(µ− 1)
n∑

i=1

(xi − tk)−2 − λ
∑

1≤i<j≤n

((xi − tk) (xj − tk))−1((**))

+
(
λ1t

−1
k − λ2 (1− tk)−1

)( n∑
i=1

(xi − tk)−1

)

− t−1
k

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
− µ

∑
1≤i≤n
1≤l≤m

1− tl
xi − tl



− (1− tk)−1

n(1 + λ1 + λ2 +mµ+
n− 1

2
λ

)
+ µ

∑
1≤i≤n
1≤l≤m

tl
xi − tl


+µ

n∑
l=1
l 6=k

(tk − tl)
−1

(
n∑

i=1

(xi − tk)−1 −
n∑

i=1

(xi − tl)
−1

) θ
On the other hand, once can easily show that

(7)
∂Sn,m (t)
∂tk

= −µ
∫

[0,1]n
Φ

[
n∑

i=1

(xi − tk)−1

]
θ

(8)
∂2Sn,m (t)

∂t2k
=
∫

[0,1]n
Φ

(µ2 − µ
) n∑

i=1

(xi − tk)−2 + 2µ2
∑

1≤i<j≤n

((xi − tk) (xj − tk))−1

 θ
Suppose now that the ratio

(
µ2 − µ

)
/2µ2 equals (µ− 1) / (−λ); i.e., µ = 1 or µ = −λ/2. From (*) we have

0 =
∫

[0,1]n
Φ∇ωψk

by (8), if we use (**) to expand the right hand side, the first two sums add up to a constant multiple of
∂2Sn,m (t) /∂t2k. Hence, by virtue of (7) and (8), taking ψk for ϕ of (2) yields a partial differential equation
of Sn,m (t) for each k. Moreover, its principle part contains only ∂2Sn,m (t) /∂t2k. We thus have.

Theorem 3.1. Assume µ = 1 or µ = −λ/2. Then Sn,m (λ1, λ2, λ, µ; t) satisfies the following holonomic
system

0 = ti (1− ti)
∂F

∂t2i
+
{
c− 1

α
(m− 1)−

(
a+ b+ 1− 1

α
(m− 1)

)
ti

}
∂F

∂ti
− abF(9)

+
1
α


∑
j=1
j 6=i

ti (1− ti)
ti − tj

∂F

∂tj
−
∑
j=1
j 6=i

tj (1− tj)
ti − tj

∂F

∂tj

 , i = 1, . . . ,m

where, if µ = 1,

α = λ/2
a = −n
b = (2/λ) (λ1 + λ2 +m+ 1)

c = (2/λ) (λ1 +m)
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and if µ = −λ/2

α = λ/2

a = (λ/2)n

b = − (λ1 + λ2 + 1) + (λ/2) (m− n+ 1)

c = −λ1 + (λ/2)m

4. Hypergeometric Solution of the Holonomic System

Theorem 4.1. 2F
(α)
1 (a, b; c; t) is the unique solution to each of the m differeential equations in the system

(9) subject to the following conditions:

• F (t) is a symmetric function of t1, . . . , tm
• F (t) is analytic at the origin with F (0) = 1

Sketch of Proof.

Uniqueness:

Noting that a symmetric analytic solution of (9) must be expressible as a power series C [[r1, . . . , rn]] where
the ri are some rational basis for the symmetric polynomials, Kaneko changes variables ti → ri (t) where
ri (t) is the ith elementary symmetric polynomial in t and makes an ansatz

F (t) =
∑

λ∈P(m)

aµrµ (t) , rµ (t) = rµ1 (t) · · · rµm
(t) , aµ ∈ C

and then shows that their is a total ordering
R
< of the partitions λ for which recursion relations for the

coefficients aµ take the form

aλ = sum of aµ with µ
R
< λ

Solution in terms of hypergeometric functions:

Summing the equations in (9) one sees that a symmetric solution of (9) must satisfy

0 =
m∑

i=1

ti (1− ti)
∂F

∂t2i
+

m∑
i=1

{
c− 1

α
(m− 1)−

(
a+ b+ 1− 1

α
(m− 1)

)
ti

}
∂F

∂ti
− abF(9)

+
1
α

m∑
i=1


∑
j=1
j 6=i

ti (1− ti)
ti − tj

∂F

∂tj
−
∑
j=1
j 6=i

tj (1− tj)
ti − tj

∂F

∂tj
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Kaneko then establishes certain derivative identities for Jack symmetric functions2 which allow him to
conclude that if one sets

F (x) =
∞∑

d=0

∑
|λ|=d

cλC
(α)
λ (x) , C

(α)
λ (x) ≡ α|λ| |λ|!

〈Jλ, Jλ〉α
J

(α)
λ (x)

and chooses the coefficients cλ as

cλ =
[a](α)

λ [b](α)
λ

[c](α)
λ |λ|!

then F (x) satisfies (9) identically.

5. The main result

Well, the main result is now sorta obvious as the Kaneko’s generalized Selberg integrals satisfies a certain
holonomic system of PDEs for which the generalized hypergeometric function is the unique symmetric
analytic solution satisfying F (0) = 1. The only thing left is to verify that the generalized Selberg integral is
analytic at the origin and to determine appropriate multiplicative constant. However, the case when t = 0
corresponds to the original Selberg integral, which is known.

In addition, Kaneko gives a sort of Kummer formula allowing a slight extension of the obvious result.

Proposition 5.1. If F (t1, . . . , tm) is a solution of the system (9), then (t1 · · · tm)−a
F
(
t−1
1 , . . . , t−1

m

)
is also

a solution of the system obtained from (9) by replacing b by a−c+1+(m− 1) /α and c by a−b+1+(m− 1) /α.

Thus, Kaneko obtains

Theorem 5.2. Let

Sn,m

(
λ1, λ2, λ, µ; t(m)

)
=
∫

[0,1]n

 ∏
1≤i≤n
1≤k≤m

(xi − tk)


µ(

n∏
i=1

xλ1
i (1− xi)

λ2

) ∏
1≤i<j≤n

|xi − xj |λ
 dx(n)

Then

Sn,m

(
λ1, λ2, λ, 1; t(m)

)
= C1 2F

λ/2
1

(
−n, 2

λ
(λ1 + λ2 +m+ 1) = n− 1;

2
λ

(λ1 +m) ; t(m)

)
where

C1 = Sn,0 (λ1 +m,λ2, λ)

2These identities are relatively straight-forward, the first is just the fact that the Jack symmetric functions are eigenfunctions

of

D (α) =
α

2

nX
i=1

x2
i

∂

∂x2
i

+
X
i6=j

xi

xi − xj

∂

∂xi

The second that they are eigenfunctions of the Euler operator

nX
i=1

xi
∂

∂xi

And the third gives an expression for
nX

i=1

∂

∂xi
Jλ (x)

in terms of generalized binomial coefficients.
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Moreover,

∫
[0,1]n

 ∏
1≤i≤n
1≤k≤m

(1− xitk)


−λ/2(

n∏
i=1

xλ1
i (1− xi)

λ2

) ∏
1≤i<j≤n

|xi − xj |λ
 dx(n)

= C2 2F
2/λ
1

(
λ

2
n,
λ

2
(n− 1) + λ1;λ (n− 1) + λ1 + λ2 + 2; t(m)

)
where

C2 = Sn,0 (λ1, λ2, λ)

6. Dessert

Corollary 6.1. Let µ be a partition and set

Iµ ≡
∫

[0,1]n
J2/λ

µ

(
x(n)

)( n∏
i=1

xλ1
i (1− xi)

λ2

) ∏
1≤i<j≤n

|xi − xj |λ
 dx(n)

Then

Iµ = J (2/λ)
µ

(
1(n)

) n∏
i=1

Γ (iλ/2 + 1) Γ (µi + λ1 + (n− i)λ/2 + 1) Γ (λ2 + (n− i)λ./2 + 1)
Γ (λ/2 + 1) Γ (µi + λ1 + λ2 + (2n− i = 1)λ/2 + 2)

This is proved by simply plugging the generalized Cauchy identity∏
i≤i≤n
1≤k≤n

(1− xitk)−1/α =
∑

ν

J (α)
ν

(
x(n)

)
J (α)

ν

(
t(n)

) 1
〈Jλ, Jλ〉α

into the integrand in () and then equating the coefficients of J (2/λ)
µ

(
t(n)

)
that occur on both sides (recall

that 2F
2/λ
1

(
t(n)

)
is defined as an expansion in the J (2/λ)

µ

(
t(n)

)
.

Thus, in just a couple lines one proves a famous conjecture of Macdonald, latter proved by Kadell. (At
the time of the conjecture it was known that there existed a family of symmetric functions with such a
closed integral formula, Macdonald conjectured that this family would be the Jack symmetric functions,
and Kadell proved it. This development took place from around 1986- 1996).


