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1. Recap

Let me begin by recalling the general setup and principal objects.

The back-story:

• GR : a real reductive Lie group realizable as the set of real points of a complex linear algebraic
group defined over R;

• L : set of Langlands parameters for GR;
• Lλ : set of Langlands parameters for irreducible admissible representations of regular integral

infinitesimal character λ;
• ĜR,λ = {πx | x ∈ Lλ} : admissible representations of regular integral infinitesimal character λ ∈ h∗;

• HCλ =
{
Vx = πx|K−finite | x ∈ Lλ

}
: set of irreducible Harish-Chandra ((g,K)-) modules corre-

sponding to irreducible admissible representations πx ∈ ĜR, x ∈ Lλ.

In the last episode:

• g = Lie (GR)C; h, a CSA for g; ∆ = ∆ (h, g), roots of h in g; Π ⊂ ∆, choice of simple roots in ∆,
∆+ = ∆+ (h, g; Π) set of positive roots.

• G : adjoint group of g = Lie (GR)C
• Primλ = {Jx ∈ Prim (U (g)) | Jx = Ann (Vx) , x ∈ Lλ}
• Ng : nilpotent cone in g
• G\Ng : nilpotent orbits in g
• S = {AV (Jx) | x ∈ Lλ} : the special nilpotent orbits in G\Ng

• d : G\Ng → S : the SBV-duality map that restricts to an involution on S.
• Γ : a subset of the simple roots.
• lΓ : standard Levi subalgebra attached to Γ ⊂ Π;

lΓ = h +
∑
α∈〈Γ〉

gα

• RΓ = indg
lΓ

(0lΓ) : the Richardson orbit induced from the trivial orbit of a Levi subalgebra lΓ of g
• Fact: every special nilpotent orbit O ∈ S is determined by the following closure data

Rmin (O) = {smallest Richardson orbits whose closures contain O }
R∨min (O) = {smallest Richardson orbits whose closures contain d (O)}

• Ψ = {Γ ⊂ Π} : a set of standard Gammas: a collection of Γ ∈ 2Π such that

i : Ψ→ {conjugacy classes of Levi subalebras of g} , i (Γ) = Ad (G) lΓ

is a bijection.
• (τ (O) , τ∨ (O)) : the tau signature of a special orbit, where

τ (O) =
{

Γ ∈ Ψ | indg
lΓ

(0lΓ) ∈ Rmin (O)
}

τ∨ (O) =
{

Γ ∈ Ψ | indg
lΓ

(0lΓ) ∈ R∨ (O)
}
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2. The Plan for Today

• Tau signatures of cells
– H-C cells
– The Spaltenstein-Vogan Criterion
– The cell-orbit correspondence

• Explicit cell-orbit correspondence
– the exceptional group case
– the classical cases

∗ standard Gammas to Richardson orbits to partitions
∗ computing tau signatures of special orbits

3. Tau signatures for Harish-Chandra cells

Let me recall the cell decomposition of the set HCλ of irreducible Harish-Chandra modules of infinitesimal
character λ. We fix a regular integral infinitesimal character λ, and let Lλ denote the (finite) set of Langlands
parameters fof HCλ. For x ∈ Lλ, we write Vx for the corresponding Harish-Chandra module. For any pair
x, y ∈ Lλ, we say

x y ⇐⇒ ∃ a f.d. representation F (occuring in T (g) ) such that Vy appears in Vx ⊗ F
and that

x ∼ y ⇐⇒ x y and y  x

Then ∼ is an equivalence relation on HCλ and the corresponding equivalence classes are called Harish-
Chandra cells.

Fact 3.1. If x, y belong to the same cell, then

AV (Vx) = AV (Vy) =⇒ AV (Ann (Vx)) = AV (Ann (Vy))

Here AV (Vx) is the associated variety of the (g,K)-module Vx, a collection of KC-orbits in (g/k)∗ and
AV (Ann (Vx)) is the associated variety of the primitive ideal corresponding to x ∈ Lλ, the closure of a single
GC-orbit in g. Both of these equivalences follow from the circumstance that tensoring by a finite-dimensional
representation doesn’t really affect the outcome of the gradation processes by which the associated varieties
are constructed.

Notation 3.2. For any cell C ⊂ Lλ, let OC be the orbit in Ng whose closure is the common associated variety
of the annihilators of the corresponding set of representations.

Another, equivalent characterization of Harish-Chandra cells goes like this. Identify the set Lλ as set of
vertices of a weighted directed graph G where the weight of a vertex x ∈ G is the tau-invariant τ (x) ⊂ Π
of the primitive ideal corresponding to Vx and for which there is an edge x → y from x to y whenever
Vy appears in Vx ⊗ g. The Harish-Chandra cells then correspond to the subgraphs in which every ordered
pair (x, y) of vertices can be connected by a directed path (along the directed edges) from x to y. So in
particular, if x, y belong to the same cell, then there is a directed path from x to y as well as a directed
path from y to x.

The Atlas software computes these graphs as a by-product of the KLV-polynomial computations. Here is a
remarkable empirical fact:

Observation 3.3. Let λ be a regular and integral. For each cell C ∈ Lλ, form

τ (C) = {τ (x) | x ∈ C}
Then, for simple split real groups,

# {τ (C) | C ⊂ Lλ} = # special nilpotent orbits in Ng
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Recall that the special nilpotent orbits are exactly the orbits that appear as the associated varieties of
primitive ideals of regular integral infinitesimal character. Evidently, the set τ (C) has something to do with
the orbit OC . Indeed,

Theorem 3.4 (Vogan). Suppose C is a cell of Harish-Chandra modules with associated complex nilpotent
orbit OC. Then OC is contained in the closure of indg

l (0l) if and only if C contains an element x whose
τ -invariant τ (x) contains the simple roots of l.

Ideas behind the proof. In [ Sp1], Spaltenstein proves that a special orbit O is contained in a Richardson orbit
indg

l (0l) if and only if the sign representation of Wl occurs in the restriction of the Springer representation
σ (O) ∈ Ŵspecial corresponding to O to Wl. Vogan then observed that σ (OC) must also occur in the
coherent continuation representation of W attached to the cell,1 and that for the sign representation to
occur in coherent continuation representation attached to a cell C it is necessary and sufficient to have at
least one x ∈ C such that the simple roots of l all lie in τ (x).2

Here is another remarkable fact,

Fact 3.5. For each HC cell C in a block there is a corresponding dual cell C∨ with the property that

{τ (y) | y ∈ C∨} = {τc (x) | x ∈ C}
where τc (x) is the complement of τ (x) in Π.

Definition 3.6. Let C be an HC cell and set

τ (C) = {τ (x) | x ∈ C}

We partial order the elements of τ (C) as follows: each τ (x) ∈ τ (C) is a certain subset of the simple roots,
and so corresponds to a certain Levi subalgebra lτ(x) of g and hence to a certain Richardson orbit

Oτ(x) = indg
lτ(x)

(
0lτ(x)

)
We say

τ (x) ≤ τ (y) ⇐⇒ Oτ(x) ⊂ Oτ(y) ,

set
τmin (C) = {minimal τ (x) ∈ τ (C)}

and define the tau signature of a cell as the pair

τsig (C) = (τmin (C) , τmin (C∨)) .

Corollary 3.7 (B). A special orbit O is the nilpotent orbit attached to a cell C if and only if

τsig (O) = τsig (C)

4. Explicit cell-orbit correspondences

As per the Corollary above, to figure out the explicit cell/orbit correspondences we just need to compute
the tau signatures of HC cells and the tau signatures of special nilpotent orbits; and then match them up.

Now the the tau-signatures of cells which can be obtained from the output of the Atlas wcells command as
follows. wcells produces a listing of the irreducible representaions in a block, cell-by-cell, along with their
tau-invariants and other data connected to the W-graph of the block. All one has to do is observe which
tau-invariants appear in which cell and collect the minimal ones (with respect to the ordering of Gammas
induced by the ordering of Richardson orbits) into a set τmin (C), It is easy to figure out the duality map

1by consistency with Springer correspondence
2In Vogan’s “Big Green Book”, where the coherent continuation representation is developed, sα · Θ (x) = −Θ (x) is a

condition that puts α ∈ τ (x)
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C ↔ C∨ amongst the cells using Fact 3.5, and then write down the tau signature of a cell as prescribed by
Definition 3.6.

As for the tau-signatures of orbits: well, because one normally parameterizes the nilpotent orbits of classical
groups using partitions, and uses Bala-Carter data to parameterize the nilpotent orbits of the exceptional
groups we have two separate methods to relate tau signatures to nilpotent orbit parameters.

• The tau-signatures of special nilpotent orbits for the exceptional groups can be obtained by consult-
ing Spaltenstein’s book. In [ Sp2], one finds not only Hasse diagrams showing the closure relations
among the special nilpotent orbits, but also an explicit description of the duality map, and tables
listing the induced nilpotent orbits, in particular the Richardson orbits, for the exceptional groups.
In short, everything you need to figure out the tau signature of a particular orbit.

• Figuring out tau-signatures of special nilpotent orbits for the classical groups requires a little more
thinking. However, once one absorbs Chapters 5, 7, and 8 of Collingwood and McGovern [ CM],
it’s not too hard to figure out how to compute the partition corresponding to a Richardson orbit
corresponding to a given Levi lΓ:

Γ→ RΓ = indg
lΓ

(0)←→ pΓ ∈ PG
One can then use the dominance partial ordering of partitions to figure out the minimal Richard-
son orbits OpΓ that contain a given special orbit Op, and then, using an implementation of the
Spaltenstein duality map on partitions, the minimal Richardson orbits that contain its Spaltenstein
dual. I’ll describe the underlying algorithms in a little more detail in the next section.

5. Computing tau signatures for the special nilpotent orbits of classical groups

Before getting into the details of the computation, I should probably point out that the basic strategy
to be pursued is quite simple. Recall that the nilpotent orbits of a complex classical Lie algebra g can
be parameterized by certain families Pε (Ng) of partitions of Ng; Ng being the dimension of the standard
representation of g. Moreover, the partial ordering of orbits is identical to the partial ordering of the
corresponding partitions: that is to say, if pO denotes the partition corresponding to a nilpotent orbit O,
then

O′ ⊆ O ⇐⇒ pO′ ≤ pO
where ≤ denotes the usual dominance partial ordering of partitions:

p ≤ q ⇐⇒
i∑

j=1

pi ≤
i∑

j=1

qi ; i = 1, . . . ,min (length (p) , length (q)) .

So once we identify the partitions corresponding to the Richardson orbits RΓ, Γ ∈ Υ, we can readily identify
the minimal Richardson orbits that contain a given nilpotent orbit Op, p ∈Pε (Ng). In particular, we can
do this for a special orbit O and its Spaltenstein dual d (O) and thereby compute the tau signature of O.

5.1. Standard Gammas. Recall that a collection of standard Gammas is a set Ψ of subsets of Π such
that the correspondence

Ψ 3 Γ←→ G · lΓ
is a bijection. It turns out that, almost always, if lΓ ≈ lΓ′ as Lie algebras then lΓ is G-conjugate to lΓ′ . So,
usually, forming a collection of standard Gammas amounts to selecting a particular Γ out of each equivalence
class

Ψl ≡ {Γ ∈ Ψ | lΓ ≈ l}
and a convenient way to choose as a representative of Ψl, the Γ appears in the natural lexicographic ordering
of Ψl. (For classical groups, this has the effect of selecting the Γ ∈ Ψl which is maximally continguous toward
its beginning.) In the case when we have non-conjugate but isomorphic Levis, we also use lexicographic
ordering to select a representative Γ for each conjugacy class.
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5.2. Standard Gammas to partitions. As remarked above, there is a standard parameterization of
nilpotent orbits of the classical simple complex Lie algebras in terms of certain families of partitions. Below
we shall describe these parameterizations explicitly on a case-by-case basis. But first I will describe a how
one computes the partition corresponding to the Richardson orbit RΓ induced from a (parabolic with a)
Levi subalgebra lΓ, Γ ∈ Υ. This method was gleamed from the discussion in §7.3 of Collingwood-McGovern.

Suppose first that lΓ is a maximal Levi subalgebra of g (the general case will follow from this special case
and “induction in stages”). Such a Levi will have only one simple root absent in its standard Gamma Γ,
say that root is i, i ∈ {1, . . . , n}and so will split

lΓ = gli ⊕ g′n−i

where g′n−i is of the same Cartan type as g but of rank n − i. In what follows we shall denote by Ng the
dimension of the standard representation of g. So

Ng =


n+ 1 when g ≈ An
2n+ 1 when g ≈ Bn

2n when g ≈ Cn
2n when g ≈ Dn

Of course, the nilpotent orbits of g, for classical g are parameterized in terms of partitions of Ng.

Here is how one finds the partition of Ng corresponding to the nilpotent orbit induced from a nilpotent
orbit Ol in maximal Levi subalgebra l . We’ll do the case where g 6≈ An first. Write

Ol = Ogli ⊕Og′n−i

and let d be the partition of Ngli = i prescribing the orbit Ogli and let f be the partition of Ng′n−i
prescribing

the orbit Og′n−i
. If necessary we extend the partitions f or d with 0’s so that they have the same number

of parts, say so that length (d) = length (f) = m. Next we define a new partition p̃ = [p̃1, . . . , p̃m] of Ng by
setting

p̃i = 2di + fi , i = 1, . . . ,m

With this setup in mind, we have

Theorem 5.1 (Theorem 7.3.3 in C-M). Let g be a classical simple Lie algebra of type B, C, or D, let l be
a maximal Levi subalgebra of g, let Ol be a nilpotent orbit in l, and let p̃ be the partition of Ng attached to
Ol be the construction above. Then the partition p of Ng corresponding to O = Indg

l (Ol) is the X-collapse
of p̃, where X = B,C, or D according to the Cartan type of g.

When g is of type Dn and the orbit Og′n−i
is very even and of numeral type

{
I
II

}
, then O =Indg

l (Ol) is

also very even and its type is determined by the following rules:

• If i 6= n, then numeral type of O is the same as that of Og′n−i
.

• If r = 0, then numeral of l is the same as that of l but differs from it if n is odd. (Here we say that
the Levi subalgebra lΓ ≈ gln−1 of rank n− 1 is of numeral type I if Γ ∩ {n− 1, n} = {n− 1} and is
of numeral type II if Γ ∩ {n− 1, n} = {n}.)

Now consider a maximal Levi subalgebra lΓ. Since lΓ is maximal, Γ is of the form

Γi = {1, 2, . . . , n} − {i} = {1, . . . , i− 1} ∪ {i+ 1, . . . , n}

We refer to {1, . . . , i− 1} as the A-head of Γ and {i+ 1, . . . , n} as the G-tail of Γ. Now corresponding to
the decomposition

lΓi = gli ⊕ g′n−i

we can regard the 0-orbit of lΓi as
0lΓi

= 0gli ⊕ 0g′n−i
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The partitions of i = Ngli and Ng′n−i
corresponding respectively to 0gli and 0g′n−i

are, respectively

d = (1)i , and

f = (1)Ng′r

It now quite easy to construct the partition p̃ and its X-collapse p, which will be the partition corresponding
to the Richardson orbit Indg

lΓi

(
0lΓi

)
.

What about the partitions corresponding to the Richardson orbits arising from non-maximal Levi subalgebra
lΓ? These are easily handled as well. For a standard Gamma Γ ∈ Υ we define its G-tail as the last contiguous
subsequence in Γ that ends in n = rnk (g). (And here we are thinking of the integers that appear in Γ as
being listed in increasing order.) If Γ does not contain n then we regard its G-tail as empty. The A-head
of Γ will be defined as the complement of the G-tail of Γ in Γ. So for example, if Γ = {1, 2, 3, 5, 6, 9, 10} its
G-tail will be {9, 10} and its A-head will be {1, 2, 3, 5, 6}. (We remark that if this Γ arose in the situation
where g = B10, then the semisimple part of the corresponding Levi subalgebra would be isomorphic to
A3 +A2 +B2.)

Here’s how we get the partition of Ng corresponding to the Richardson orbit corresponding to a general Γ
∈ Υ. The first step is to split Γ into its A-head ΓA and its G-tail ΓG. Suppose the cardinality of ΓG is r, this
means the Levi subalgebra lΓ of g has a factor g′r (i.e. a factor of the same Cartan type as g but of rank r).
The A-head, on the other hand, indicates that lΓ contains a certain standard Levi subalgebra lA of gln−r;
the standard Levi whose semisimple part is the subalgebra of sln−r generated by the simple roots indexed in
ΓA. Here’s what we do: instead of trying to induce directly from 0lΓ up to g, we first induce from l = lA⊕g′r
up to gln−r⊕g′r. This first induction effectively ignores the g′r factor and replaces the 0-orbit of lA with the
corresponding Richardson orbit in gln−r. Suppose we have we figured out how to attach a partition dA of
n− r to a standard Gamma ΓA for sl n−r in such a way that dA corresponds to the Richardson orbit of the
standard Levi subalgebra lΓA of sln−r, thne we can readily apply Collingwood-McGovern’s Theorem 7.3.3
(our Theorem 3.1) to get the right partition for the Richardson orbit of lΓ in g. A little more explicitly,
once we induce up to the trivial orbit of lΓ up to gln−r ⊕ g′r, the next stage, induction from the maximal
Levi subalgebra gln−r ⊕ g′r to g, can be carried out using the partition corresponding to Ind

gln−r
lA

(0lA) as d
and the partition (1)Ng′r corresponding to the trivial representation of g′r as f and applying Theorem 3.1.

It just remains to clarify how we go from ΓA to the partition d of n − r. This can be accomplished by
applying a Theorem of Kraft, Ozeki and Wakimoto (Theorem 7.2.3 in [C-M]). We’ll simply re-state that
result in terms of the standard Gammas ΓA

Theorem 5.2. Let ΓA be a standard Gamma for gln−r. Let (i1, . . . , ik) be the lengths of the contiguous
subsequences of Γ. Set

qΓA = [i1 + 1, i2 + 1, . . . , ik + 1, 1, . . . , 1]
where we add as many 1’s after the ik + 1 until we end up with a partition of n − r. Then the transpose
qtΓA of qΓA will be the partition of n− r corresponding to the Richardson orbit Indsln−r

lΓ
(0lΓ).

Remark 5.3. The discussion above also tells us how to figure out the Richardson orbits Indg
lΓ

when g is
of type A. However, the algorithm David gives on the An subpage of [NOLSID] already accomplishes this
quite succinctly (and of course is entirely equivalent).

Remark 5.4. We should note here two conventions that come into play when applying Theorem 3.1 in the
extreme cases when (i) rank (g′r) = rank (g)− 1 and (ii) rank (g′r) = 0 and g is of type B. In situation (i),
the convention is to take the partition corresponding to the trivial orbit of lA ≈ gl1 to be [1] before applying
Theorem 3.1 In situation (ii), the convention is takes the trivial orbit of g′r ≈ B0 to be [1] before applying
7.3.3.

5.3. Computing the tau signatures of special orbits. Up to this point we haven’t had to say exactly
which partitions of Ng are parameterize the nilpotent orbits of g. We’ll do that now case-by-case, and at
the same time describe how we identify special orbits and their tau signatures.
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5.4. An. The nilpotent orbits of An ≈ sln+1 are in a one-to-one correspondence with partitions of n+1. For
An, every nilpotent orbit is both special and Richardson. The way to recover the Γ for the Levi subalgebra
inducing a Richardson orbit whose corresponding partition is p is to simply to take its transpose, subtract
1 from each entry of pt. Once you have pt you recover the corresponding Γ by forming a list of integers
between 1 and n in such a way that the first contiguous subsequence is 1, 2, . . . , (pt)1, the second contiguous
sequence is (pt)1 + 2, (pt)1 + 3, . . . , (pt)1 + (pt)2 + 1, and so on. If we denote by Γp the standard Gamma
so obtained, we can say that the correspondences

p −→ Γp

pt −→ Γpt

furnish us with the tau signature (Γp,Γpt) of the special nilpotent orbit corresponding to the partition p.
For each special orbit is Richardson, so set of minimal Richardson orbits containing it is the orbit itself,
and similarly for its Spaltenstein dual (which will be the nilpotent orbit corresponding to the partition pt).

5.5. Bn. The nilpotent orbits of Bn ≈ SO (2n+ 1) are in one-to-one correspondence with partitions of 2n+1
such that even parts, if they occur, occur with even multiplicity. [C-M] denotes this set of partitions by
P1 (2n+ 1). There are several ways of characterizing the special nilpotent orbits of Bn. The one I adopted
in my computations was the following. Define the Spaltenstein duality map d as sending a partition p
in P1 (2n+ 1) to its transpose pt and then taking its B-collapse, which will be the largest partition in
P1 (2n+ 1) that is dominated by pt. The B-collapse of pt (or any partition of 2n + 1) can be computed
directly from pt using Lemma 6.3.3 in [C-M]. The special nilpotent orbits for Bn are can then be identified
as the partitions p ∈ P1 (2n+ 1) such that d ◦ d (p) = p.

Since we already have a means of figuring out the partition pΓ in P1 (2n+ 1) that corresponds to a Richard-
son orbit

RΓ = Indg
lΓ

(0lΓ)
and because the closure relations of the nilpotent orbits is consistent with the dominance ordering of the
corresponding partitions, we can use the dominance ordering of partitions to figure out exactly which Γ’s
lead to a Richardson orbit RΓ whose closure contains a given special nilpotent orbit;

pO< pΓ ⇐⇒ O ⊂ RΓ

And the dominance ordering of partitions will also identify which of these Richardson orbits such that
Op ⊂ RΓ are minimal (i.e., not containing any other with the same property). In this way, we can readily
determine the minimal Γ ∈ Υ such that O ⊂ RΓ and get the first half of the tau signature of O. Doing the
same thing for the Spaltenstein dual d (O) = Od(pO) of O yields the second half of the tau signature of O.

5.6. Cn. The nilpotent orbits of Cn ≈ Sp (2n) are in one-to-one correspondence with the partitions of 2n
such that the odd parts, if they occur, occur with even multiplicity. Collingwood and McGovern denote
this set of partitions by P−1 (2n). The identification of special nilpotent orbits and their tau signatures is
carried out in the same manner as in the Bn case (just utilizing C-collapses in place of B-collapses).

5.7. Dn. The nilpotent orbits of Dn ≈ SO (2n) are in a nearly one-to-one correspondence with partitions
of 2n for which the even parts occur with even multiplicity. Collingwood-McGovern denotes this set of
partitions is denoted by P1 (2n). The hedge “nearly one-to-one” is due to the fact that to a very even
partition, which is a partition p ∈ P1 (2n) consisting of only even parts, there corresponds two distinct
nilpotent potent orbits, usually denoted by OIp and OIIp or some such notation involving the numerals I
and II. But so long as a partition p ∈ P1 (2n) is not very even, the correspondence between partitions
and nilpotent orbits is one-to-one.

Luckily the complications arising from the even-even orbits are relatively mild. In particular, the partial
ordering of the partitions in P1 (2n) still gives the correct closure relations for the corresponding orbit, one
just has to understand that if p is a very even partition then the orbits OIp and OIIp must be regarded as
incomparable (which is in fact true with respect to the closure ordering of the nilpotent orbits).
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Now it turns out that there are only a few cases where a Richardson orbit RΓ turns out to be very even:
for example, it does happen for the Levis

(An−1)′ ←→ Γ = (1, . . . , n− 1) and (An−1)′′ ←→ Γ = (1, . . . , n− 2, n)

when n is even. More generally, this happens whenever the G-tail of a standard Γ is trivial and the partition
corresponding to the A-head has only even multiplicities. At any rate, dealing with this complication just
amounted to figuring out when and how to distinguish between very even Richardson orbit pairs. It actually
was not hard to kill both birds with one stone; we simply adopted a computationally innocuous convention
in which the numeral I very even orbits are represented by truncated very even partitions (i.e., with only
non-zero parts included) and the numeral II very even orbits are represented by very even partitions with
one trailing 0. Thus , for example, the Richardson orbit corresponding to the (An−1)′ Levi was distinguished
from that of the (An−1)′′ Levi as follows

OI[(2)n] ←→ [(2)n]

OII[(2)n] ←→ [(2)n , 0]

I remark that this hack was harmless to the partial ordering computations, yet turned out also to be very
useful in getting the right Spaltenstein duality map. For with this convention it was very easy to implement
the convention of [ CM] (in which one changes the numeral type of a very even orbit upon taking its
Spaltenstein dual whenever g ≈ Dn and n is odd).

After dealing with the very even orbits in the manner described above, the computation of the tau signatures
of the special nilpotent orbits in Dn was carried out in the same fashion as for Bn and Cn.

6. Tables

Below I give the orbit - cell correspondence for the big block of D8. Note the use of the convention of adding
a trailing zero to distinguish type II from type I orbits (for very even partitions).

[15,1] <----> cell #’s 0,1,2,4
[13,3] <----> cell #’s 3,5,6,10
[13,1,1,1] <----> cell #’s 8,18
[11,5] <----> cell #’s 7,11,13,15
[11,3,1,1] <----> cell #’s 9,12,19,20,21,38
[11,1,1,1,1,1] <----> cell #’s 67,72
[9,7] <----> cell #’s 14,16,24,28
[9,5,1,1] <----> cell #’s 17,22,33,39
[9,3,3,1] <----> cell #’s 23,32,35,41,43,46,48,65
[9,3,2,2] <----> cell #’s 37,50,51,53
[9,3,1,1,1,1] <----> cell #’s 68,73,74,114
[9,1,1,1,1,1,1,1] <----> cell #’s 102,131
[8,8] <----> cell #’s 26,30
[8,8,0] <----> cell #’s 25,29
[7,7,1,1] <----> cell #’s 27,31,34,40,64
[7,5,3,1] <----> cell #’s 36,42,44,47,49,56,66,71,77
[7,5,2,2] <----> cell #’s 52,54,57,79
[7,5,1,1,1,1] <----> cell #’s 69,75,81,115
[7,3,3,3] <----> cell #’s 55,80
[7,3,3,1,1,1] <----> cell #’s 70,76,82,83,90,92,95,116,117,118,120,123
[7,3,2,2,1,1] <----> cell #’s 84,100,119,124,143,145
[7,3,1,1,1,1,1,1] <----> cell #’s 103,132,144,148
[7,1,1,1,1,1,1,1,1,1] <----> cell #’s 161,169
[6,6,3,1] <----> cell #’s 45,58,60,78
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[6,6,2,2] <----> cell #’s 61,87
[6,6,2,2,0] <----> cell #’s 59,86
[6,6,1,1,1,1] <----> cell # 89
[5,5,5,1] <----> cell #’s 62,85
[5,5,3,3] <----> cell #’s 63,88,97,98,99
[5,5,3,1,1,1] <----> cell #’s 91,93,96,104,121,126,133
[5,5,2,2,1,1] <----> cell #’s 105,134,146
[5,5,1,1,1,1,1,1] <----> cell #’s 107,136,149
[5,3,3,3,1,1] <----> cell #’s 94,101,106,122,125,135,147,151,156
[5,3,3,1,1,1,1,1] <----> cell #’s 108,112,137,139,150,152,153,158,164
[5,3,2,2,2,2] <----> cell #’s 172,173,174,175
[5,3,2,2,1,1,1,1] <----> cell #’s 159,167,181,182
[5,3,1,1,1,1,1,1,1,1] <----> cell #’s 162,170,185,186
[5,1,1,1,1,1,1,1,1,1,1,1] <----> cell #’s 197,200
[4,4,4,4] <----> cell #’s 109,127
[4,4,4,4,0] <----> cell #’s 110,128
[4,4,3,3,1,1] <----> cell #’s 111,129,138,141,154
[4,4,3,1,1,1,1,1] <----> cell #’s 155,165
[4,4,2,2,2,2] <----> cell #’s 178,179
[4,4,2,2,2,2,0] <----> cell #’s 176,177
[4,4,2,2,1,1,1,1] <----> cell # 183
[4,4,1,1,1,1,1,1,1,1] <----> cell #’s 192
[3,3,3,3,3,1] <----> cell #’s 157,166
[3,3,3,3,2,2] <----> cell # 180
[3,3,3,3,1,1,1,1] <----> cell #’s 113,130,140,142,160,168,184,187
[3,3,3,1,1,1,1,1,1,1] <----> cell #’s 163,171,193,194,195
[3,3,2,2,2,2,1,1] <----> cell #’s 188,189,190,191,202
[3,3,2,2,1,1,1,1,1,1] <----> cell #’s 196,199,207
[3,3,1,1,1,1,1,1,1,1,1,1] <----> cell #’s 198,201,208
[3,1,1,1,1,1,1,1,1,1,1,1,1,1] <----> cell #’s 210,211
[2,2,2,2,2,2,2,2] <----> cell #’s 205,206
[2,2,2,2,2,2,2,2,0] <----> cell #’s 203,204
[2,2,2,2,2,2,1,1,1,1] <----> cell # 209
[2,2,2,2,1,1,1,1,1,1,1,1] <----> cell # 212
[2,2,1,1,1,1,1,1,1,1,1,1,1,1] <----> cell # 213
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] <----> cell # 214
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B-C Type Cell #’s GraphIsoClass
E8 0 1*
E8(a1) 1 8*
E8(a2) 2 35-A
E8(a3) 3 196-A

5 196-A
E8(a4) 4 260-A

7 260-A
E8(b4) 6 560-A

8 560-A
9 560-A

E8(a5) 10 1100-A
13 1100-A
17 1100-A

E7(a1) 11 567-A
E8(b5) 12 3192-A

14 3752-A
E8(a6) 15 4025-A

18 2625*
D7(a1) 16 3240-A

19 3240-A
20 3240-A
21 3240-A
22 3240-A

E8(b6) 23 3640-A
25 3640-A
27 3640-A

E7(a3) 24 3240-B
29 3240-B

E6(a1)+A1 26 8192-A
30 8192-A

D7(a2) 28 7560-A
31 5040-A
35 7560-A

E6 33 525-A
D5+A2 32 4536-A

38 4536-A
39 4536-A
45 4536-A

E6(a1) 34 3500-A
37 3500-A

E7(a4) 36 6075-A
41 6075-A
43 6075-A

A6+A1 40 2835-A
D6(a1) 44 8800-A

49 8800-A
A6 42 4200-A

46 4200-A
48 4200-A
50 4200-A

E8(a7) 47 22778
51 38766
53 46676
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D5 54 2100*
E6(a3) 55 8800-a

63 8800-a
D4+A2 52 4200-a

57 4200-a
59 4200-a
62 4200-a

A4+A2+A1 60 2835-a
D5(a1)+A1 58 6075-a

64 6075-a
65 6075-a

A4+A2 56 4536-a
66 4536-a
68 4536-a
69 4536-a

A4+2A1 61 7560-a
67 7560-a
70 5040-a

D5(a1) 71 3500-a
79 3500-a

A4+A1 72 8192-a
80 8192-a

D4(a1)+A2 73 3640-a
78 3640-a
81 3640-a

A4 74 3240-b
82 3240-b

A3+A2 75 3240-a
76 3240-a
83 3240-a
84 3240-a
86 3240-a

D4(a1)+A1 87 4025-a
89 2625*

D4 85 525-a
D4(a1) 88 3752-a

90 3192-a
2A2 77 1100-a

91 1100-a
92 1100-a

A3 94 567-a
A2+2A1 93 560-a

95 560-a
96 560-a

A2+A1 97 260-a
99 260-a

A2 98 196-a
100 196-a

2A1 101 35-a
A1 102 8
0 103 1
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