
Tau signatures, orbits and cells, I

O.S.U. Lie Groups Seminar

November 28, 2007

1. Introduction

As in my talks last September, the basic setting will be that of a real reductive algebraic group GR occuring
as the set of real points of a linear complex algebraic group GC defined over R. Again, we’ll let HCλ denote
the set of Harish-Chandra modules of irreducible admissible representations of infinitesimal character λ.
HCλ is a finite set of representations parameterized by a certain discrete set Lλ of Langlands parameters.
The talks I gave in September were about how to figure out when two representations in HCλ share the
same primitive ideal in the universal enveloping algebra U(g) of g = Lie(GR)C; i.e.,

for which x, y ∈ Lλ does Ann (πx) = Ann (πy) ?

The basic idea then was to enhance the discrete topology of the Langlands parameter set Lλ with a certain
weighted graph structure and then observe that for Ann (πx) = Ann (πy) it was necessary and sufficient
that the local graph of x be identical to the local graph of y. (Albeit, that is not quite how I put it in
September.)

What I want to discuss about in the next couple of talks is how one can explicitly identify the associated
variety of the annihilator Ann(πx) of a representation πx ∈ HCλ.

It might be worthwhile to present a diagram that sketches the distinction between the two notions of
associated varieties and the two common routes from representations to nilpotent orbits in g:

Jx = Ann (πx) ∈ Primλ

↗ ↘ gr
HCλ 3 πx AV (Jx) = Ox ∈ G\Ng

↘ gr GC ↗
AV (πx) ⊂ KC\(g/k)∗

We note these maps are all surjective, and appearing as it does at the tail end of a sequence of surjections,
the associated variety Ox of the annihilator of a representation πx is relatively weak invariant. But weaker
invariants can in fact be better invariants. For the weaker the invariant, the broader the reach of the
corresponding notions of similarity and proximity. (I myself think of this as a sort of conceptual uncertainity
principle.) In any case, the associated variety of the annihilator of a representation is important because it
attaches to a representation an algebraic geometric object amenable to algebraic analysis - where even such
mundane notions as dimension pull back to deeper abstract properties on the pure representation-theoretical
side of things.

Today’s talk will be focused on the associated varieties of the annihilators Ann(πx) ⊂ U(g) of irreducible
admissible representations πx ∈ Hλ of regular integral infinitesimal character. Each of these is, as is well-
known, the (Zariski) closure of a single nilpotent orbit Ox of the complexified adjoint group G = Ad(g)
in the nilpotent cone N = Ng of g.1 In fact, arising as they do from irreducible representation of regular
integral infinitesimal character, the orbits we consider today will be what-are-known-as special nilpotent
orbits. My goal for today is to simply to bring to light a particular attribute, the tau signature, of a special
nilpotent orbit O Next time, we’ll use this signature to match irreducible admissible representations of
regular integral infinitesimal character to the associated varieties of their annihilators.

1Throughout this talk we’ll be making use of an identification g ≈ g∗ arising, say, from some non-degenerate invariant

bilinear form on g. Ng will denote the cone of nilpotent elements in g. Occasionally, when the identity of the underlying Lie

algebra is clear, we’ll simply write N for Ng.
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2. Spaltenstein-Barbasch-Vogan duality

Let me begin with the prototypical example.

Let g ≈ An−1 ≈ sln (C). As is well know, the nilpotent orbits in g can be parameterized by partitions of n.
Explicitly, if

p = [p1, . . . , pk] , p1 ≥ p2 ≥ · · · ≥ pk > 0 ,

k∑
i=1

pk = n

is a partition of n, we can set

Op =


g



Jp1 0 · · · · · · 0

0 Jp2

. . .
...

...
. . . . . .

...
... Jpk−1 0
0 · · · · · · 0 Jpk


g−1 | g ∈ SLn (C)


,

where each J` is an `× ` Jordan block of the form

J` =



0 1 0 · · · 0

0 0
. . . . . .

...
...

. . . . . . 0
... 0 1
0 · · · · · · 0 0


(N.B., J1 = [0] and so the partition [1, . . . , 1] corresponds to the orbit of the zero matrix.) The correspon-
dence

Pn 3 p −→ Op ∈ G\N
is a bijection. (See e.g., §3.1 and Chapter 5 in Collingwood-McGovern.)

Now what’s especially nice about this parameterization is that the set of orbits inherits many of the structural
properties of the set Pn of partitions of n.

For example, there is a canonical partial ordering of partitions - the so-called dominance ordering defined
by

p ≤ p′ ⇐⇒ for each 1 ≤ i ≤ n
i∑

j=1

pj ≤
i∑

j=1

p′j

Fact 2.1. Let p,p′ ∈ Pn and let Op, Op′ be the corresponding nilpotent orbits for SLn (C), then

p ≤ p′ ⇐⇒ Op ⊆ Op′ .

There is also a canonical order-reversing involution on Pn: the transpose map

d : Pn → Pn : d (p) = pt

where if p = [p1, . . . , pk] (
pt
)
i

= # {j such that pj ≥ i}

This involution of Pn induces a involution on the set of nilpotent orbits

d : G\Ng → G\Ng , Op 7→ Opt

which we shall refer to as the Spaltenstein duality map.
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There is similar but slightly more complicated Spaltenstein duality map for the other simple Lie algebras.
Before describing it, perhaps we should first recall the partition-parameterization of nilpotent orbits for the
other classical complex Lie algebras.

Fact 2.2. • The nilpotent orbits of simple Lie algebras of type Bn are parameterized the set PBn
by

partitions of 2n+ 1 for which the even parts occur with even multiplicity;
• The nilpotent orbits of simple Lie algebras of type Cn are parameterized by the set PCn

of partitions
of 2n for which the odd parts occur with even multiplicity;

• The nilpotent orbits of simple Lie algebras of type Dn are (nearly) parameterized by the set PDn of
partitions of 2n for which the even parts occur with even multiplicity. If a partition is very even,
meaning only even parts occur and these parts have even multiplicities, an additional label I, or II
is needed to separate orbits.

Notation 2.3. So that we can treat the classical groups uniformly, we’ll let PG denote the set of partitions
parameterizing a classical group G (so, in particular, when G ≈ An, PG = Pn+1.)

Fact 2.1 generalizes to the following statement:

Fact 2.4. Let G be a classical group, p,p′ ∈ PG and let Op, Op′ be the corresponding nilpotent orbits for
G, then

p ≤ p′ ⇐⇒ Op ⊆ Op′ .

Fact 2.2, however, does not extend so easily. For, unless G ≈ SLn (C), the transpose map p 7→ pt is not an
involution of PG; indeed pt need not lie in PG. However, it is true that there is a unique maximal partition
(pt)G ∈ PG such that (pt)G ≤ pt (inside Pn). (pt)G is called the G-collapse of pt and through it one can
define a Spaltenstein duality mapping

d : G\N → G\N : Op 7→ O(pt)G

Fact 2.5. If O ⊆ O′ then d (O′) ⊆ d (O) .

Fact 2.6. Although the Spaltenstein duality map is not an involution on G\N , when restricted to its range
it is an involution:

d ◦ d ◦ d = d .

Definition 2.7. If O ⊂ N lies in the image of the Spaltenstein duality map, we shall say that O is a
special nilpotent orbit.

Fact 2.8. There are several other equivalent characterizations of special nilpotent orbits (valid also in the
context of exceptional groups) that will be useful later on:

• A nilpotent orbit O is special if its closure is the associated variety of a primitive ideal of regular
integral infinitesimal character.

• A nilpotent orbit O is special if its associated Weyl group representation (via the Springer corre-
spondence) is a special representation of the Weyl group. (The point being that there is an intrinsic
characterization of a special Weyl group representation and the Springer correspondence pre-
serves “special-ness”.)

As alluded to above, there is also a notion of a Spaltenstein duality map and a notion of special orbits
for the exceptional groups. However, since the nilpotent orbits of the special groups have little to do with
partitions, the original construction of the Spaltenstein duality map for the exceptional groups was a bit ad
hoc. However, Barbasch and Vogan in their paper, Unipotent representations of complex semisimple groups,
provided a uniform construction of a duality map

η : G\Ng → G∨\Ng∨

mapping nilpotent orbits of G to nilpotent orbits in its corresponding dual group. When g is simply-laced
(so that g ≈ g∨) the map η coincides with the Spaltenstein duality map, and even when g 6≈ g∨, it can
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be interpreted as leading to the same Spaltenstein duality map (e.g. by setting d = σ−1
G ◦ σG∨ ◦ η, where

σG : G\Ng ←→ ŴG is the Springer correspondence).

3. Levi subalgebras and nilpotent orbits

In this section, g will be a complex reductive Lie algebra and G = Ad (g) will be the (complex) adjoint
group of g. We recall the following definitions.

Definition 3.1. Let g be a complex reductive Lie algebra. A Borel subalgebra of g is a maximal solvable
subalgebra of g, a parabolic subalgebra of g is a subalgebra containing a Borel subalgebra, and a Levi
subalgebra of g is the reductive part of a parabolic subalgebra (a parabolic algebra p can always be written
as a semidirect sum p = l + n, with l reductive and n nilpotent).

There are two natural ways of constructing nilpotent orbits in g from nilpotent orbits of Levi subalgebras:
Bala-Carter inclusion and (parabolic) induction:

3.1. Bala-Carter inclusion. Let l be a Levi subalgebra of g and let Ol be a nilpotent orbit in l. Then

incgl (Ol) = G · Ol

will be a nilpotent orbit in g.

Remark 3.2. One says that a nilpotent orbit O is distinguished if no X ∈ O is contained in a proper Levi
subalgebra l of g. The Bala-Carter parameterization of nilpotent orbits amounts to generating, in a one-to-
one fashion, all the nilpotent orbits of g from (conjugacy classes of) distinguished orbits of Levi subalgebras
via the inclusion method.

3.2. Parabolic induction. The second method of constructing a nilpotent orbit of g from a nilpotent
orbit of a Levi subalgebra is by parabolic induction. Here one starts with an orbit Ol of a Levi subalgebra
l, chooses a parabolic p = l + n wherein l appears as the Levi factor (p is not unique), and then sets

indg
l (Ol) = unique dense orbit in G · (Ol + n)

It is a fact that the resulting orbit does not depend on the choice of p. Nevertheless, this method is commonly
referred to as parabolic induction of orbits because of its close connection with parabolic induction of
representations.

3.3. Inclusion, induction and duality. The following result is what David Vogan [Vo] refers to as a
“serious theorem” in [BV]

Theorem 3.3. Suppose g and g∨ are dual Lie algebras with dual Levis l and l∨. Duality, Bala-Carter
inclusion, and parabolic induction satisfy

ηg∨

(
incg

∨

l∨ (O∨l )
)

= indg
l (ηl∨ (O∨l ))

3.4. Principal includes, Richardson orbits, and a special property of special orbits. Fix a Levi
subalgebra l ⊆ g. Obviously the ordering of orbits by inclusion in closures is preserved by Bala-Carter
inclusion: i.e., if O′l ⊆ Ol ⊂ Nl, then

incgl (O′l) ⊆ inc
g
l (Ol)

Thus, the largest orbit in Ng that is obtainable from an orbit in Nl by Bala-Carter inclusion is incgl (Ol,prin),
where Ol,prin is the principal nilpotent orbit in Nl. Set

I =
{
incgl (Ol,prin) | l a Levi subalgebra of g

}
Lacking of a standard nomenclature, we’ll simply refer to the orbits in I as principal includes.
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Among the induced orbits attached to a Levi subalgebra there orbit induced from the principal orbit will
also be maximal. However, we shall be more interested in the minimal induced orbits; that is, the orbits
induced from the trivial orbits of Levi subalgebras. These are called Richardson orbits. We let R denote
the set of Richardson orbits

R =
{
indg

l (0l) | l a Levi subalgebra of g
}

Remark 3.4. Since induction preserves “special-ness” and because the trivial orbit is always special, Richard-
son orbits are always special orbits.

Fact 3.5. Let O be a special nilpotent orbit in a complex simple classical algebra. Set

I (O) =
{
O′ ∈ I | O′ ⊆ O

}
R (O) =

{
O′ ∈ R | O ⊆ O′

}
Then O is completely determined by the sets I (O) and R (O).

Since the Barbasch-Vogan duality is ordering reversing

ηg (Og,prin) = 0g∨ and ηg (0g) = Og∨,prin

Thus, by the Barbasch-Vogan theorem

ηg∨

(
incg

∨

l∨ (Ol∨,prin)
)

= indg
l (ηl∨ (Ol∨,prin)) = indg

l (0l)

Applying the order-reversing property of the the Barbasch-Vogan duality map again, we see that

incg
∨

l∨ (Ol∨,prin) ⊂ O =⇒ ηg (O) ⊆ indg
l∨ (0l∨)

and so
I (O)←→ R (η (O))

Thus, the above fact can be re-stated as

Fact 3.6. Every special orbit O is specified by knowing the sets R (O) and R (η (O)) .

4. The tau signature of an orbit

We’ll soon conclude this talk with yet another consequence or recharacterization of Fact 3.7.

First of all, the sets R (O) are determined by their minimal elements

Rmin (O) = {O′ ∈ R (O) | O′ is not contained in the closure of any other O′′ ∈ R (O)}

Secondly, for any subset Γ of the set of simple roots Π ⊂ ∆ (h, g), there is a corresponding standard Levi
subsubalgebra lΓ, such that [lΓ, lΓ] is generated by the simple roots in Γ, and the association

Γ 7→ lΓ

hits every conjugacy class of Levi subalgebras as Γ ranges over the power set of Π. This association is far
from 1:1, however. What is almost true is that if lΓ ≈ lΓ′ as Lie algebras then lΓ and lΓ′ are conjugate
under Ad (g) and so produce the same Richardson orbit. The exceptions to this situation are

• For types Bn and Cn there are two conjugacy classes of rank 1 Levi subalgebra (corresponding to
{α} = Γ being a long or short root).

• For types Dn the outer-automorphism αn−1 ←→ αn leads to some non-conjugate but isomorphic
Levis

• For E7 there are three pairs of isomorphic but non-conjugate Levi subalgebras (where l ≈ 3A1, A3 +
A1, or A5)
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Definition 4.1. A set of standard Gammas is a collection Ψ = {Γi | i ∈ I} of subsets of Π such that
the association

Γ ∈ Ψ→ Ad (g) -conjugacy class of lΓ

is a bijection.

Next time I’ll describe a easy, natural way to set up a set of standard gammas for the classical groups which
will allow an easy determination of the partitions corresponding to corresponding Richardson orbits. Today,
however, I’ll simply conclude with the following recharacterization of Fact 3.7:

Fact 4.2. Fix a special orbit O, suppose

Rmin (O) =
{
indg

lΓ1

(
0lΓ1

)
, . . . , indg

lΓk

(
0lΓk

)}
Rmin (η (O)) =

{
indg∨

lΦ1

(
0lΦ1

)
, . . . , indg

lΦ`

(
0lΦ`

)}
and set

τ (O) = {Γ1, . . . ,Γk} ⊂ 2Π

τ∨ (O) = {Φ1, . . . ,Φ`} ⊂ 2Π∨

Then, O is completely determined by the pair (τ (O) , τ∨ (O)).

Definition 4.3. Let O be a special orbit for a complex simple Lie algebra, and let τ (O) and τ∨ (O) be as
above. We call the pair (τ (O) , τ∨ (O)) the tau signature of O.

Remark 4.4. As the name implies, tau signatures will have something to do with tau invariants. This
connection we shall make next time.
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