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1. Introduction

Let G be a reductive Lie group, K a maximal compact subgroup of G. In fact, we shall assume that G is a
set of real points of a linear algebraic group G defined over C. Let g be the complexified Lie algebra of G,
and g = k + p a corresponding Cartan decomposition of g

Definition 1.1. A (g,K)-module is a complex vector space V carrying both a Lie algebra representation
of g and a group representation of K such that

• The representation of K on V is locally finite and smooth.
• The differential of the group representation of K coincides with the restriction of the Lie algebra

representation to k.
• The group representation and the Lie algebra representations are compatible in the sense that

πK (k) πk (X) = πk (Ad (k) X) πK (k) .

Definition 1.2. A (Hilbert space) representation π of a reductive group G with maximal compact subgroup
K is called admissible if π|K is a direct sum of finite-dimensional representations of K such that each
K-type (i.e each distinct equivalence class of irreducible representations of K) occurs with finite multiplicity.

Definition 1.3 (Theorem). Suppose (π, V ) is a smooth representation of a reductive Lie group G, and K
is a compact subgroup of G. Then the space of K-finite vectors can be endowed with the structure of a
(g,K)-module. We call this (g,K)-module the Harish-Chandra module of (π, V ).

Theorem 1.4 (Langlands Classification). Fix a minimal parabolic subgroup Po = MoAoNo. Then equiva-
lence classes of irreducible admissible representations of G are in a one-to-one correspondence with the set
of triples (P, [σ] , ν) such that

• P is a parabolic subgroup of G containing Po

• σ is an equivalence class of ireducible tempered unitary representations of M and [σ] is its equivalence
class
• ν is an element of a′ with Re (ν) in the open positive chamber.

The correspondence is

(P, [σ] , ν)←→ unique irreducible quotient of IndG
MAN (σ ⊗ eν ⊗ 1)

Over that past thirty years there has been a succession of reparameterizations of Langland’s parameters;
via results of Knapp and Zuckerman “tempered representations” can be replaced by “discrete series repre-
sentations or limits of discrete series representations”; then, to make connections with Shelstad’s notion of
“endoscopic transfer” and the Arthur conjectures, Adams and Vogan “upgraded” the Langlands’ parameter-
ization to a parameterization in terms of L-groups. And now, in the Atlas program, there is combinatorial
version of “Langland’s parameters” in terms of pairs (x, y) of “L-data”. In this latter picture the L-datum
x corresponds to a triple (η, B, λ) where η is a “strong involution” for G = (G)C, B is a Borel subgroup of
G, λ is an element of the weight lattice of G with respect to a Cartan subgroup H ⊂ B ⊂ G, and y is an
L-datum for the dual group G∨ of G. How one actually connects these L-data pairs with the “Langlands
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parameters” of the theorem above is a very tricky business; but, roughly speaking, the first element x of the
pair fixes the L-packet containing the representation, the second element fixes the R-packet containing the
representation, and the representation (x, y) is the unique representation lying in the intersection of this
L-packet and this R-packets. The purpose of this talk is to describe some recent progress in breaking up
the set Ĝadm of irreducible admissible representations into subsets sharing a strong and stronger algebraic
invariant. I should point out that the principal contributors in this business, to my knowledge at least, have
been David Vogan, Monty McGovern, Peter Trapa, and myself; but there might be others as well since it
not always clear as who has talked to who.

2. Reduction to Infinitesimal Character ρ

The first and easiest partitioning of set of irreducible admissible representations is by grouping together
those representations with the same infinitesimal character; that is, we group together those irreducible
admissible representations for which the action of the center of U (g) on the corresponding Harish-Chandra
module is by the same character. We shall denote by HCλ the full subcategory of Harish-Chandra modules
of infinitesimal character λ.

Now, it turns out that the invariants we shall examine are also well-behaved with respect to tensoring by
finite-dimensional representations and so, for example, results for the irreducible Harish-Chandra modules of
infinitesimal character ρ, can be “translated” to the entire coherent family containing HCρ; i.e, that is, via
the Zuckerman translation principle results for HCρ can extended to the set of irreducible Harish-Chandra
modules of regular integral infinitesimal character. So henceforth we shall presume to be working in HCρ.
And so doing, we can now think of the pairs (x, y) specifying an irreducible Harish-Chandra module as
corresponding to pairs of strong involutions (one for G and one for a dual real form of G), or a bit more
geometrically, a element of K\G/B and an element of K∨\G∨/B∨.

3. Blocks, cells and KLV polynomials

3.1. Blocks of irreducible Harish-Chandra modules. Because of the obvious duality in the parameter-
ization it is natural, in the atlas point-of-view, to let x and y separately vary over all the strong involutions
of all the strong real forms of (fixed inner classes of) respectively, G and G∨. (Of course, when one is
concerned with only the irreducible admissible representations of a particular real form, one need only vary
y over the strong involutions of the dual group.)

At any rate, viewing the parameters x and y as being “attached” to, respectively, a real form of GC and real
form of G∨

C , we immediately arrive at an initial, albeit atlas-centric, partitioning of the set of irreducible
admissible representations G; we simply group together those representations (x, y) where x is a strong
involution corresponding to our fixed real form G of GC and y corresponds to a fixed real form of G∨.
Thus, a block of representations of G is simply a set of representations (x, y) where the strong involutions
y correspond to a particular (equivalence class of real) form(s) of (GC)∨ . Below is a table is listing the
number of elements in each “block”’ of E8:

e8 E8 (e7, su (2)) E8 (R)
e8 (compact) 0 0 1
E8 (e7, su (2)) (quaternionic) 0 3150 73410
E8 (R) (split) 1 73410 453060

The total number of equivalences classses irreducible Harish-Chandra modules of the split form E8 (R) with
infinitesimal character ρ is thus

1 + 73410 + 453060 = 526 471

and these fall into three blocks, corresponding to the three real forms of E8 (C)∨ ≈ E8 (C).
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3.2. KLV-polynomials. Consider the Grothendieck group GHC of the category of Harish-Chandra mod-
ules; that is, the set of formal Z-linear combinations irreducible Harish-Chandra modules Jλ. Well, actually,
the set of irreducible Harish-Chandra modules is only a particular basis for GHC . The set of standard Harish-
Chandra is an equally viable basis. The KLV polynomials provide a means of translating from one basis to
the other.

Recall that the standard Harish-Chandra module Mλ corresponding to a Langland’s parameter λ = σ⊗eν⊗1
is just the Harish-Chandra module of the full induced representation

Mλ = IndG
P (σ ⊗ eν ⊗ 1)

while the irreducible Harish-Chandra module Jλ is unique maximal quotient of Mλ. Passing to the
Grothendieck group, we can write

Jλ = Mλ + mλν1Mν1 + · · ·+ mλνk
Mνk

We note that the standard representation Mλ containing Jλ always appears with coefficient 1 and the rest
of the expansion is of finite-length and is in a certain natural sense “upper-triangular”.

In fact, the coefficients mλνi
are determined by the Kahzdan-Lusztig conjecture (now a theorem).

Theorem 3.1 (KL conjecture for real groups). There exists a set of polynomials Pλν (q), indexed by Lang-
lands parameters (with the same infinitesimal character) such that in the expansion

Jλ = mλλMλ + mλ,ν1Mν1 + · · ·+ mλνk
Mνk

the coefficients mλ,νi are such that

mλ,νi
= (−1)`(λ)−`(νi) Pνi,λ, (1)

The polynomials Pλν (q) are the so-called Kahzdan-Lusztig-Vogan polynomials. The big announcement last
March was the explicit computation of the KLV-polynomials for E8.

3.3. Cells of Harish-Chandra modules. Now the utility of the KLV-polynomials is by no means limited
to simply interpolating between the standard representations and irreducible representations. In fact, upon
inversion, the coefficients of the various powers of q prescribe the multiplicities in a Janzten filtration of
Mλ. The following theorem is the basis of our next refinement of HCλ.

Theorem 3.2. Suppose Jx, Jy are irreducible H-C modules of infinitesimal character ρ. Then the multi-
plicity of Jy in Jx ⊗ g|ρ is exactly the coefficient of q(|x|−|y|−1)/2 in Px,y (q).

To put this to use we now introduce the notion of cells of Harish-Chandra modules.

Definition 3.3. Given two objects X, Y in HCλ, we say X  Y if there exists a finite-dimensional
representation F of G appearing in the tensor algebra T (g) such that Y appears as a subquotient of X ⊗F .
Write X ∼ Y if X  Y and Y  X. The equivalence classes for the relation ∼ are called cells (of
Harish-Chandra modules).

It turns out that the decomposition of HCλ into disjoint cells is compatible with the decomposition into
blocks, and moreover, given the preceding theorem, this decomposition is explicitly computable via the
preceding theorem and knowledge of the KLV -polynomials. In fact, the Atlas software produces this
decomposition as a by-product of its computation of the KLV -polynomials.

3.4. Wgraphs.

Definition 3.4. Consider a block B of irreducible Harish-Chandra modules of infinitesimal character ρ.
The W -graph of B is the weighted graph where:

• the vertices are the elements v ∈ B
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• there is an edge (v, v′) of multiplicity m between two vertices if

coefficient of q(|v|−|v
′|−1)/2 in Pv,v′ (q) = m 6= 0

• there is assigned to each vertex v a subset τ (v) of the set of simple roots of g (the descent set of
v).

Remark 3.5. All of this data is contained in the output of the Atlas wgraph command. Below is an example
of the (annotated) output of wgraph for the big block of G2.

block element descent set (edge vertex,multiplicity)
0 {} {}
1 {2} {(3,1)}
2 {1} {(4,1)}
3 {1} {(0,1),(1,1),(6,1)}
4 {2} {(0,1),(2,1),(5,1)}
5 {1} {(4,1),(8,1)}
6 {2} {(3,1),(7,1)}
7 {1} {(6,1),(11,1)}
8 {2} {(5,1),(10,1)}
9 {1,2} {(7,1),(8,1)}
10 {1} {(8,1)}
11 {2} {(7,1)}

The W -graph for this block thus looks like
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Note that there are four cells: {0}, {1, 6, 7, 11}, {2, 4, 5, 8, 10}, and {9}. We remark it is not necessary that
cell elements be connected by linked by double edges, two vertices v, v′ will belong to the same cell if and
only if there is a directed path from v to v′ and a directed path from v′ to v.

Remark 3.6. The representations in the same cell have the same Gelfand-Kirillov dimension (as they are
connected via a tensoring by a finite dimensional representation). In fact, they have the same associated
variety. So how come we are finding only three cells when there are five nilpotent orbits for G2? The answer
will come in the next installment when we connect cells with special nilpotent orbits. To prepare for that
discussion, I’ll conclude today’s seminar with a brief digression into Weyl group cells and primitive ideal
theory.
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4. Primitive Ideals and Cells in W

Let U (g) be the universal enveloping algebra of g. Let V be a left U (g)-module. The annihilator of V
is the two-sided ideal Ann (V ) defined by

Ann (V ) = {x ∈ U (g) | xv = 0 , ∀ v ∈ V }

A primitive ideal is the annihilator of an irreducible U (g)-module. Let Prim (g) denote the set of primitive
ideals of U (g).

On the other hand, if V is an irreducible U (g)-module, the center of Z (g) of U (g) acts by a character χλ;
and in fact,

Ann (V ) ∩ Z (g) = kerχλ

(Here we are thinking of the characters χλ as being parameterized by W -orbits λ in h∗ via the Harish-
Chandra isomorphism.). Collecting together the set of primitive ideals having the same infinitesimal char-
acter we have

Prim (g) =
∐

λ∈h∗/W

Prim (g)λ

where
Prim (g)λ = {primitive ideals with central character λ}

As a hint as to what is ahead, we note that every irreducible Harish-Chandra module will also have an
associated infinitesimal character, an associated variety and an associated primitive ideal and our principal
achievement over the last summer has been the explicit splitting of the irreducible Harish-Chandra mod-
ules of infinitesimal ρ into subsets with the same associated variety and even finer subsets with the same
infinitesimal character.

However, it turns out that primitive ideal theory is most easily understood in terms of Verma modules,
rather than Harish-Chandra modules.

Definition 4.1. Let λ ∈ h∗. The Verma module M (λ) of highest weight λ + ρ is the left U (g)-module

U (g)⊗U(b) Cλ+ρ

Here b = h + n is a Borel subalgebra of g, and Cλ+ρ is the 1-dimensional representation of b defined by

(h + x) v = (λ + ρ) (h) v ∀ h ∈ h , x ∈ n , v ∈ Cλ+ρ

Theorem 4.2 (Duflo). For w ∈W (g, h) set

Mw = M (wρ− ρ)

and let
Lw = unique irreducible quotient of Mw

Then
ϕ : W → Prim (ρ) : w → Ann (Lw)

is a surjection.

Definition 4.3. Let ∼ be the equivalence relation on W defined by

w ∼ w′ ⇐⇒ ϕ (w) = ϕ (w′)

The corresponding equivalence classes of elements of W are called left cells in W .

To define double cells and special representations we need a technical device due to Joseph.



6

Theorem 4.4. For µ ∈ h∗ set

p (µ) = GoldieRank (U (g) /Ann (L (µ)))

Then for w ∈W , p (wµ) is a harmonic polynomial on P (∆)++ (the dominant regular chamber). Moreover,
if w,w′ belong to the same left cell C

pw′ = pw (≡ p (wρ))

Since each Goldie rank polynomial pw is a harmonic polynomial on h∗, W can act pw and thereby generates
an irreducible finite-dimensional representation of W .

Definition 4.5. Fix a finite-dimensional representation σ of W . The w ∈W such

C 〈W · pw〉 ≈ σ

comprise the double cel l in W corresponding to σ ∈ Ŵ . The representations of W that arise in this fashion
are called special representations of W .

Theorem 4.6.
#Prim (g)ρ =

∑
σ∈cWspecial

dim σ

4.1. Special Nilpotent Orbits. Remarkably, the special representations of the Weyl group arise in quite
a different way, in connection with the Springer correspondence. The way one attaches a Weyl group
representation to a nilpotent orbit is even more complicated than Goldie polynomial method for primitive
ideals. Unlike the case of primitive ideals though, this construction does not always attach an irreducible
representations of W to an orbit O. However, by tossing out the nonspecial representations, it does always
attach a unique special representation to O. But the easiest method of defining special nilpotent orbits is
the following: the special nilpotent orbits are precisely those nilpotent orbits that occur as the associated
variety of an irreducible U(g)-module with regular integral infinitesimal character.

5. Next Time

Next time I’ll describe how two remarkable discoveries of mine allow one to determine when two block
elements i ∼ (x, y) and j ∼ (x′, y′) share the same associated variety, and when they share the same
primitive ideal.


