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1. Review

2. Some Commutative Algebra

Here we review in just a wee bit more detail the commutative algebra that underlies notion of a characteristic
cycle.

Definition 2.1. A commutative ring R is Noetherian if every chain of ideals in R

I0 ⊂ I1 ⊂ I2 ⊂ · · ·

terminates after a finite number of steps (i.e., there is an interger k such that Is = Ik if s ≥ k).

Remark 2.2. Polynomial rings R [X1, . . . , Xn] are Noetherian if R is. In particular, S (p) = C [p∗] is Noe-
therian.

Theorem 2.3. If R is a Noetherian ring, and M is a finitely generated R-module, then any increasing
filtration of M

0 = M0 ⊂M1 ⊂M2 ⊂ · · ·
must terminate after a finite number of steps.

Definition 2.4. An ideal P in a commutative ring R is said to be prime if

(i) P 6= R
(ii) x, y /∈ P ⇒ xy /∈ P for all x, y ∈ R.

Definition 2.5. Spec (R) is the set of all prime ideals of R.

Remark 2.6. In the setting of algebraic geometry where R is a ring of polynomials over C, prime ideals of
R are in a one-to-one correspondences with irreducible affine varieties.

Definition 2.7. Let M be a module for a commutative ring R. The set Ass (M) of associated primes is
the set of prime ideals P in R such P is the annihilator of some m ∈M . That is to say,

Ass (M) = {P ∈ Spec (R) | P = Ann (m) for some m ∈M}

Remark 2.8. If P ∈ Ass (M) then necessarily there is a submodule of M isomorphic to R/P ; viz;

R ·m ' R/P if P = Ann (m)

Theorem 2.9. Let R be a Noetherian ring and M 6= 0 a finitely generated R-module. Then there exists a
finite filtration

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

of M by submodules Mi such that for each i we have

Mi/Mi−1 ' R/Pi

with Pi ∈ Spec (R).
1
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Proof. Choose any P1 ∈ Ass (M), then there exists a submodule M1 of M isomorphic to R/P1. Now choose
any P2 ∈ Ass (M/M1). Then there exists a submodule of M2 ⊂M such that M2/M1 ' R/P2. Continuing
in this fashion we build an ascending chain of submodules of M . Since R is Noetherian and M is finitely
generated, this ascending chain of submodules must eventually arrive at M .

Lemma 2.10. Let R be a commutative Noetherian ring and let M be a finitely generated R-module. Choose
a filtration

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

of M by submodules Mi such that for each i = 1, . . . , n, Mi/Mi−1 ' R/Pi, with Pi ∈ Spec (M). Let
S = {Pi | i = 1, . . . , n}, and let Smin = {P ∈ S | P  P ′ ∀ P ′ ∈ S}. Then, for P ∈ Smin, the integers

m (M,P ) = # {P ′ ∈ S | P = P ′}

is independent of the choice of filtration.

Remark 2.11. This lemma is not even a lemma in Vogan’s paper; yet it is the basis for the definition of
Vogan’s definition of the characteristic cycle. As such it’s a bit of a shame that he only gives some rough
indications as to how one might prove it. Here’s the idea though.

• Consider a particular submodule Mi = R/Pi occuring in a filtration F of M . If Pi is not a maximal
ideal, then it’ll sit inside a chain of prime ideals terminating with a maximal ideal Pi,k

Pi = Pi,1 ⊂ Pi,2 ⊂ · · · ⊂ Pi,k

And we’ll have a corresponding filtration of Mi by submodules

R/Pi,k ⊂ · · · ⊂ R/Pi,2 ⊂ R/Pi,1 = Mi

• Lemma: If F ′ is a refinement of F obtained by inserting chains Mi,1 ⊂ · · · ⊂ Mi,k in place of the
original submodules Mi = R/Pi, then the chains must be of the form R/Pi,k ⊂ · · · ⊂ R/Pi,2 ⊂
R/Pi,1, with Pi ⊂ Pi,j for j = 2, . . . , k.

• Lemma (?) A common refinement exists for any pair of filtrations of M .1

• Notice that the process of refinement never introduces any new minimal primes to filtration. There-
fore, the number of minimal primes in the common refinement of two filtrations must coincide with
the number of minimal primes of each of the original filtrations.

3. Computing Multiplicities

In [V], the following proposition is given.

Proposition 3.1. Suppose P is a prime ideal in a commutative Noetherian ring R, and M is a finitely
generated R-module annihilated by P . There there is a element f ∈ R − P , with the property that Mf is a
free (R/P )f -module. Morever, rank (Mf ) is the multiplicity of P in characteristic cycle of M .

Corollary 3.2. In the setting of the preceding proposition, suppose m is any maximal ideal containing P
but not containing f . Then

m (P,M) = dimR/m (M/mM)

1That a common refinement exists is not at all obvious to me. What might be plausible is that any maximal refinement of

a filtration of M has the same number of steps and up to changes of orderings and up to equivalences of the sort

P ∼ P ′ ⇐⇒ R/P ' R/P ′

the same equivalence classes of prime ideals occur with the same multiplicity. But ultimately, IMO, this is business of a
common refinement might be red herring. Indeed, it seems to me that the crux of the definition of multiplicity lies in the

existence of a common minimal collapse of fitrations, rather than common refinements.
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This formula however is not particularly amenable to direct calculation.

Here is an alternative procedure. Let M = gr (X) be the (S (p) ,K)-module obtained from a good filtration
of an irreducible admissible Harish-Chandra module and let

(3.1) 0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

be a finite filtration of M such that each Mi/Mi−1 ' S (p) /Pi, Pi ∈ Spec (Pi). Now each prime ideal
corresponds to Pi an irreducible affine variety Vi ⊂ p. So (3.1) is a the filtration of gr (X) by submodules
such that Mi/Mi−1 ' S (p)R/Pi ' R [Vi] the ring of regular functions on Vi.

Next, notice that if the filtration is (3.1) is KC-invariant, in which case the corresponding varieties Vi ⊂ p
are the Zariski closures of KC-orbits, and when we filter M by K-types, we’ll have

dimMλ =
n∑

i=1

dim (S (p) /Pi)λ ∗ dimVλ =
∑

i

dimR [Vi]λ

This formula shows that the Hilbert polynomial for M (using the filtration by |λ|) will just be the sum of
the Hilbert polynomials for the R [Vi]. But∑

|λ|≤k

dimR [Vi]λ ∼ tdim(Vi)

(Actually, this fact is one way of defining the dimension of an affine variety). So if d is the maximal dimension
of the Vi, only those Vi of dimension d will contribute to the leading term of the Hilbert polynomial for M .
Thus,

pM (t) =
∑

dimVi=d

pR[Vi] (t) + lower order terms

Now

• The Vi for which dimVi = d will precisely the irreducible components of the associated variety
AV (π) that have dimension 1

2GK dim (π) .
• These varieties of maximal dimension in AV (π) will correspond to minimal prime ideals occurring

in the characteristic cycle of π, and the number of times such an minimal prime ideal occurs is by
definition its multiplicity in the characteristic cycle.

• Identifying the minimal primes that occur in the characteristic cycle, with the corresponding irre-
ducible affine varieties Vi ⊂ p, which in turn are identified as with the closures of certain KC-orbits
Oi in p, we can write

pM (t) =
∑

dimOi=
1
2 GK dim(π)

m (π,Oi) pR([Oi]) (t) + lower order terms

and deduce

(3.2) BernsteinDeg (π) =
∑

dimOi=
1
2 GK dim(π)

m (π,Oi) deg
(
Oi

)
where

deg
(
Oi

)
≡ BernsteinDeg

(
R

[
Oi

])
Remark 3.3. When the characteristic variety of π is the closure of a single KC-orbit O, then we write

m (π,Oi) =
BernsteinDeg (π)

BernsteinDeg
(
R

[
Oi

]) = lim
t→∞

∑
|λ|≤t dimm (λ, π) dimVλ∑

|λ|≤t dimm
(
λ,R

[
O

])
dimVλ

(Here m (λ,X) is the multiplicity of a K-type with highest weight λ in X, and dimVλ is the dimension of
a K-type with highest weight λ.) This is Trapa’s formula.
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Remark 3.4. For principal series representations it happens that orbits Oi appearing in the KC-orbits of
maximal dimension in p. It happens in this case that the degrees of the orbits and their multiplicities all
coincide, and so one has

m (π,Oi) =
BernsteinDegree (π)

(#KC-orbits of maximal dimension)Deg (Oi)
Remark 3.5. The formula (3.2) does not given any information about the multiplicities of the smaller com-
ponents of the characteristic cycles (corresponding to minimal prime ideals which happen not to correspond
to irreducible varieties of maximal dimension in the associated variety of π).

4. The Case at Hand

Let’s now return to our problem of computing the characteristic cycles for Sahi’s representations πi. We
start with the result, and then fill in the details. But first a little notation.

Recall in our description of the restricted root systems we used a certain basis
{
γj | j = 1, . . . n

}
∈ t∗1. The{

γj

}
correspond a certain set of strongly orthogonal nilpotent elements of p; and, in fact, one can choose

elements
ej ∈ pγj

, fi ∈ p−γj
, hj ∈

[
pγj

, pγj

]
; j = 1, . . . , n

so that
{sj = {ej , fj , hj} | j = 1, . . .}

form a set of n mutually commuting standard sl2-triples. Set

yi = f1 + · · ·+ fi

and let
Oi ≡ KC · yi

Theorem 4.1. The characteristic cycle of a representation πi is

CC (πi) =
[
Oi

]
In other words, the asscociated variety of πi consists of the closure of a single KC-orbit, Oi, and that the
multiplicity of this orbit in the characteristic cycle is one.

Sketch of proof.

We show first that the associated variety of πi is precisely Oi. With this result we can then apply Trapa’s
formula,

m (π,Oi) = lim
t→∞

∑
|λ|≤t dimm (λ, π) dimVλ∑

|λ|≤t dimm
(
λ,R

[
Oi

])
dimVλ

Let S be the set of K-types of πi. Sahi provides a parameterization of these K-types and a proof that they
are all multiplicity free, and so

m (π,Oi) = lim
t→∞

∑
λ∈S
|λ|≤t

dimVλ∑
|λ|≤t dimm

(
λ,R

[
Oi

])
dimVλ

Now because R
[
Oi

]
is necessarily a subquotient of gr (Xπi

), each K-type of R
[
Oi

]
must also appear in πi;

hence,

m
(
λ,R

[
Oi

])
=

{
0, 1 if λ ∈ S
0 if λ /∈ S

We will show that in fact every K-type of πi also appears in R
[
Oi

]
, and so

m (π,Oi) = lim
t→∞

∑
λ∈S
|λ|≤t

dimVλ∑
λ∈S
|λ|≤t

dimVλ
= 1
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5. The Associated Variety of πi

We first note that the root spaces pγi
⊂ g are commutative since γi + γj is not a root of g. Moreover, for

each j = 1, . . . , n we can choose elements ej ∈ pγj , fj ∈ pγj
, and hj ∈ t1 such that

[ej , fj ] = hj , [hj , ej ] = 2ej , [hj , fj ] = −2fj , j = 1, . . . , n

The aim of this section is to show that the associated variety of (π, V ) is the closure of a single KC-orbit.
In fact, we shall show that the associated variety of (π, V ) is the closure of

KC ·

 i∑
j=1

fj


However, we do this indirectly. We will actually show that the real nilpotent orbit corresponding to the
right hand side of (2) via the Sekiguchi correspondence is the unique real orbit O such that GC · O is dense
in the associated variety of AnnU(g) (π).

The Sekiguchi correspondence is implemented via a Cayley transform defined as follows. Set

cj = exp
(
πi

4
(ej + fj)

)
and then set

Ej = c−1
j ejcj , Fj = c−1

j fjcj , Hj = c−1
j hjcj

Lemma 5.1. Under the Cayley transform, each of the sl2 triples {ej , fj , hj} ∈ gC get mapped to an sl2
subalgebra of g0. Moreover, the parabolic subalgebra of g corresponding to the span of the non-negative root
spaces of the semisimple element

H = H1 + · · ·+Hn ∈ so

can be identified with the parabolic subalgebra of G associated with its Jordan algebra structure

Lemma 5.2. GC · Yi = LC · Yi.

Step 1. GC · Yi is a union of LC-orbits
Step 2. All LC-orbits in n are of the form LC · Yk, where Yk =

∑k
j=1 Fj and LC · Yk ⊂ LC · Y` if k ≤ `.

([BSZ]).
Step 3. LC · Yi ⊂ GC · Yi ∩ nC

Since Yi is stablized by NC, and NLCNC is dense in GC, NCLC · Yi ∩ nC is dense in GC ·Fi ∩ nC.
Since [n, n] ⊂ l, [n, l] ⊂ n,

NCLC ·Xi ∩ nC = LC · Yi

Hence, LC · Yi is dense in GC · Yi ∩ nC.
Step 4. We now show that the action of GC can not bump Yi to a larger orbit LC-orbit. Assume LC · Y` =

GC · Yi ∩ nC, and ` > i.

⇒ LC · Y` ∩NCLC · Yi ∩ nC 6= ∅
⇒ ∃ n ∈ NC , l ∈ LC such that Y` = Ad (n)Ad (l)Yi

nC is abelian, so n = exp (x) and

Y` = Ad (l) (Yi) + [x,Ad (l)Yi] +
1
2

[x, [x,Ad (l)Yi]

Now Y` ∈ nC and Ad (l) (Yi) ∈ nC, but [x,Ad (l)Yi] ∈ lC,and 1
2 [x, [x,Ad (l)Yi] ∈ nC. So

LC · Y` = GC · Yi ∩ nC, and ` > i. ⇒ Y` = Ad (l)Yi with l ∈ LC

Lemma 5.3. If O is a GR-orbit of top dimension in GC · Yi, then O∩n 6= ∅.
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Proof. Since O has top dimension,

O ∩NCLC · Yi 6= ∅
⇒ ∃ z ∈ O ∩NCLC · Yi

⇒ ∃ nx = expx ∈ NC , l ∈ LC such that z = Ad (nx)Ad (l)Yi and z ∈ gR

Then
z = Ad (l)Yi + [x,Ad (l)Yi] +

1
2

[x, [x,Ad (l)Yi]]

Now Ad (l) (Yi) ∈ nC, but [x,Ad (l)Yi] ∈ lC,and 1
2 [x, [x,Ad (l)Yi] ∈ nC and all three terms on right hand

side have to reside in gR, l ∈ L ⊂ LC,and x ∈ n.Thus,

z = Ad (n)Ad (l)Yi

is such that Ad
(
n−1

)
z = Ad (l)Yi ∈ n, and also lies in O.

Lemma 5.4. If O is a real G-orbit contained in GC · Yi, with dimR (O) = 1
2 dimC GC · Yi, then O = G · Yi.

Proof. Assume O is a real G orbit contained in GC ·Yi and that dimR (O) = dimC GC ·Yi. By the preceding
lemma O∩n is non-empty. It is also L-invariant, and so a union of L-orbits. In [BSZ], it is shown2 that each
of the L-orbits in n is of the form, L · Yk. Moreover, if k < `, the stabilizer of Y` in l is strictly contained
within the stabilizer of Yk in l, and so dim (L · Yk) < dim (L · Y`) if k < `. Thus, there will be at most one
L-orbit of any particular dimension in O ∩ n. Since Oi = G · Yi ⊂ GC · Yi and dimR (Oi) = 1

2 dimC GC · Yi,
the lemma follows. .

Lemma 5.5. GK dimπi = 1
2 dimC GC · Yi

Proof. This is proved by computing the dimension of the stabilizer of Yi in gC and then comparing it with
the Gelfand-Kirilov dimension of πi (as computed in previous section.).

Lemma 5.6. Ass
(
AnnU(g) (πi)

)
= GC · Yi

Proof. This can be proved by using the explicit realization of [BSZ] to show that Yi ∈ Ass
(
AnnU(g) (πi)

)
.

Alternatively, once one can show that expB(Yi,·) defines a character for a Whittaker vector for πi, and then
by a theorem of Matumoto GC · Yi ⊂ Ass

(
AnnU(g) (πi)

)
. Comparing dimensions the conclusion follows.

Lemma 5.7. Choose fj ∈ sγj
as in the beginning of this section, and set

yi = f1 + · · · fi ∈ sC

Then the associated variety V (πi) ⊂ s of πi is the Zariski closure of KC · yi.

Proof. Set yi is just the inverse Cayley transform of Yi, and so this lemma just implements the Kostant-
Sekiguchi correspondence between G orbits.

Henceforth, we’ll let denote by Oi the unique dense orbit KC · yi in the associated variety of πi.

Corollary 5.8. The characteristic cycle of πi is of the form

V (πi) = m
(
πi,Oi

) [
Oi

]
Proof. We have seen that associated variety of AnnU(g) (πi) is GC · Yi, and that inside GC · Yi there is
only one real nilpotent orbit whose dimension is equal to GK dim (πi), and that orbit is simply G · Yi.
The Kostant-Sekiguchi corrrespondence then implies that there is only one KC-orbit in p that lies in the

2Actually, in [BSZ] it is shown that the L-orbits in n are of the form L · (E1 + · · ·+ Ek), but their argument is readily

ported to yield the analogous classification of the L-orbits in n.
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associated variety of AnnU(g) (πi) of complex dimension 1
2GK dim (πi), and that orbit is KC · yi. Theorem

8.4 of Vogan3 now implies that the characteristic variety of πi must be Oi ≡ KC · yi.

6. m
(
πi,Oi

)
= 1

In our sketch of the proof of Theorem 4.1, the proposition thatm
(
πi,Oi

)
= 1 followed from (the applicability

of) Trapa’s formula and the fact that every K-type in πi also appears in R
[
Oi

]
. We’ll now prove the latter.

Recall that we have a set of n strongly orthogonal non-compact roots and a corresponding set of n commuting
sl2-triples {ei, fi, hi} with ei ∈ pγi

, fi ∈ p−γi
.

Lemma 6.1 (Sahi). Let φo be the unique spherical vector in πi. Then, for j = 1, 2, . . . , i

e1e2 · · · ejφo

has a non-zero projection onto the K-type Vγ1+γ2+···+γj
of πi.

Corollary 6.2. For each i = 1, . . . , n there is an irreducible summand Vλi of highest weight λi = γ1 + γ2 +
· · ·+ γi in Si (p).

Proof. The ej all commute with one another, and so the products e1e2 · · · ei can be identified with the
corresponding monomials in S (p). Indeed, they can regarded as the images in U (p) of the monomials
e1 · · · ei ∈ Si (p) via the symmeterizer map sym : S (g) → U (g). Following the symmeterizer map with
Sahi’s projection, we have a K-equivariant map that sends e1 · · · ei to the K-type Vγ1+···+γi

of πi. It follows
that there must be a summand Vλi ∈ Si (p) of highest weight λi.

Corollary 6.3. The monomial φi = e1 · · · ei ∈ Si (p) has a non-zero projection onto Vλi
.

Lemma 6.4. The summand Vλj ⊂ Sj (p) does not vanish on Oi if j ≤ i.

Proof. The monomial φi has non-zero projection onto Vλi
and in fact it must project onto the highest

weight vector of Vλi
. However, φi itself need not (and is not unless i = 1) a highest weight vector. Let

en+1, . . . , edim p a basis for the complement of span (e1, . . . , en) in p, chosen in such a way that each ei is a
weight vector for K. Then the highest weight vector ψj for Vλj will be of the form

ψj = e1 · · · ej + sum of monomial terms of degree i and weight λi

= φj +
∑

ϕj,k

Now recall that Oi = KC ·yi. Evaluating ψj are the base point yi = f1 + · · ·+fi (and employing the Killing
form to evaluate polynomials on p on yi ∈ p), one obtains

ψj (yi) = φj (yi) +
∑

ϕj,k (yi)

Now

φj (yi) = 〈e1, f1 + · · ·+ fi〉 · · · 〈ej , f1 + · · ·+ fi〉
= 〈e1, fi〉 · · · 〈ej , fj〉
6= 0

3Theorem: Let (G, K) be a reductive symmetric pair of Harish-Chandra class, and X an irreducible (g, K)-module. Write

J = AnnU(g)X, a primitive ideal in U (g). Let O ⊂ V (J) be the dense G-orbit in g∗, and let V (X) ⊂ (g/k)∗ be the associated
variety of X. Then

(a) V (X) ⊂ V (J) ∩ (g/k)∗

(b) O ∩ (g/k)∗ is a finite union of KC-orbits O1, . . . ,Or, each of which has (complex) dimension equal to half that of O.
(c) Some of the Oi are contained in V (X), they are precisely the K-orbits of maximal dimension in V (X).
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On the other hand, each of the monomial terms ϕj,k will contain factors corresponding to coordinates that
evaluate to zero on yi. And so

ψj (yi) = φj (yi) 6= 0.
Having shown that the highest weight vector of Vλj

does not vanish on Oi the lemma follows.

Corollary 6.5. For every K-type λ = a1γ1 + · · ·+ aiγi occuring in πi there is a corresponding summand
Vα1γ1+···+aiγi

⊂ S (p) supported on Oi. Hence, each K-type of πi occurs in R
[
Oi

]
.

Proof. By the preceding lemma, the highest weight vectors ψj of Vγ1+···+γj
⊂ Sj (p) are supported at

yi ∈ Oi. But then by forming products of the form

(ψi)
m1 · · · (ψi)

mi

such that

a1 = m1 + · · ·mi

a2 = m2 + · · ·+mi

...
ai = mi

we can create a highest weight vector of a summand Va1γ1+···+aiγi
⊂ S (p) that does not vanish at yi. Thus

the K-type λ = a1γ1 + · · ·+ aiγi appears in R
[
Oi

]
.


