Shared Orbits

OSU Lie Groups Seminar
November ,2003

1. Introduction/Motivation

For some time now I've been trying to get a handle on a means of specifying the annihilators of unipotent representations. The basic prototype of the what I have been looking for is Devra Garfinkle's description of the generators of the annihilators of the minimal representations.

Let G be a simply-connected complex Lie group with Lie algebra \mathfrak{g}. Let \mathcal{N} be the cone of nilpotent elements of \mathfrak{g}. It is well known that \mathcal{N} consists of only finitely many G orbits, and that there is a unique nilpotent orbit $\mathcal{O}_{\min }$ of minimal dimension. In fact, one can explicitly describe the polynomial generators of the radical ideal in $S(\mathfrak{g})$ corresponding to $\overline{\mathcal{O}}_{\text {min }}$. Let F_{μ} denote the irreducible finite dimensional representation of \mathfrak{g} with highest weight μ, and let λ be the highest root of \mathfrak{g}. Then the space $S^{2}(\mathfrak{g})$ of homogeneous polynomials of degree two decomposes under the adjoint action of G as

$$
S^{2}(\mathfrak{g}) \approx F_{2 \lambda} \oplus F_{0} \oplus F_{\mu_{1}} \oplus \cdots \oplus F_{\mu_{k}}
$$

(the point being that the summands corresponding to the trivial representation and the representation with highest weight 2λ always appear). Then

$$
I_{\mathcal{O}_{\min }}=S(g)\left(F_{0} \oplus F_{\mu_{1}} \oplus \cdots \oplus F_{\mu_{k}}\right)
$$

Let $\pi_{\text {min }}$ be the unipotent representation of G attached to the minimal orbit. Then it is known that $\pi_{\min }$ is unitary and the annihilator of $\pi_{\min }$ (the so-called Joseph ideal) is generated by

$$
\operatorname{Sym}\left(\left(F_{0}-\lambda_{\min }\right) \oplus F_{\mu_{1}} \oplus \cdots \oplus F_{\mu_{k}}\right)
$$

where Sym: $S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is the symmeterizer map. (This is essentially Garfinkle's result.)
In trying to generalize this picture for other nilpotent orbits and their corresponding unipotent representations one eventually has to confront a problematic example discovered by Joseph: the 8-dimensional nilpotent orbit \mathcal{O}_{8} of G_{2}. It turns out that there are a number of peculiarities associated with this orbit:

- There are two completely prime primitive ideals attached to this orbit (only one of which corresponds to a unitary representation).
- One of these ideals (curiously enough, the one annihilating a unitary representation of G) has the property that $G r(J)$ is not prime (because $G r(J) \neq \sqrt{G r(J)}$).
- The closure of \mathcal{O}_{8} is not a normal variety, but \mathcal{O}_{8} embeds densely in the minimal orbit of $B_{3} \approx$ $\mathfrak{s o}(7, \mathbb{C})$ which is a normal variety, and the unitary representation attached to \mathcal{O}_{8} can be realized as the (irreducible!) restriction of the minimal representation of B_{3} to G_{2}.

It turns out also that the 10-dimensional nilpotent orbit of G_{2} embeds densely in the minimal orbit of a larger simple group (in this case $D_{4} \approx \mathfrak{s o}(8, \mathbb{C})$). Moreover, the minimal representation of D_{4} upon restriction to G_{2} reveals a sort of dual pair theta correspondence: g_{2} is the subalgebra of fixed points for the outer automorphisms corresponding to the S_{3} symmetry ("triality") of the Dynkin diagram of D_{4} and

$$
\left.\pi_{\min , \mathfrak{s o}(8)}\right|_{\mathfrak{g}_{2} \times S_{3}}=\bigoplus_{\sigma \in \widehat{S_{3}}} V_{\sigma} \otimes E_{\sigma}
$$

Here the V_{σ} comprise the special unipotent representations with infinitesimal character $\omega_{1}+\omega_{2}$ and E_{σ} is the irreducible S_{3}-module corresponding to σ.

This situation raised a bunch of questions for me; the main one being how prevalent is this sort of phenomenon; which in turn had two parts:

- When does one have dense embeddings

$$
\mathfrak{g} \supset \mathcal{O} \hookrightarrow \mathcal{O}^{\prime} \subset \mathfrak{g}^{\prime}
$$

of one nilpotent orbit into a nilpotent orbit of a larger Lie algebra. (I should remark that I was interested in this because the annihilators of a non-minimal unipotent representation of the smaller group might be most easily revealed by studying the embedding of $U(\mathfrak{g})$ into the Joseph ideal of $U\left(\mathfrak{g}^{\prime}\right)$.

- Is there always an accompanying dual pair phenomenon that could be used to provide realizations of non-minimal unipotent representations?

Unfortunately, the answers to both questions have already been attained. R. Brylinski and Kostant answered the first, and Jing-Song Huang answered the second (at least for simple complex groups). But it's such a pretty story, I thought it be a nice topic for a Lie groups seminar.

2. Normality and Shared Orbits (Brylinski/Kostant)

The following is a outline of how Brylinski and Kostant classified of dense embeddings of the form

$$
\begin{equation*}
\mathfrak{g} \supset \mathcal{O} \hookrightarrow \mathcal{O}^{\prime} \subset \mathfrak{g}^{\prime} \tag{2.1}
\end{equation*}
$$

with \mathfrak{g} a subalgebra of \mathfrak{g}^{\prime}. Although they considered the general case when \mathfrak{g} is a semisimple complex Lie algebra, in this outline I'll mostly stick to the case when \mathfrak{g} is simple (because in the end, it turns out that if \mathfrak{g} is simple, then a dense embedding like (2.1) is only possible when \mathfrak{g}^{\prime} is also simple - and that if \mathfrak{g} is semisimple, then the allowed embeddings are effectively enumerated simple factor by simple factor).
2.1. Normal Closures of Orbit Coverings. Let G be a simply connected semisimple complex Lie group with Lie algebra \mathfrak{g}. Let \mathcal{O} be the adjoint orbit of a nilpotent element $e \in \mathfrak{g}$, and let

$$
\nu: M \rightarrow \mathcal{O}
$$

be a G-homogeneous covering and choose $\varepsilon \in M$ such that $\nu(\varepsilon)=e$. Then

$$
G_{o}^{e} \subset G^{\varepsilon} \subset G^{e}
$$

and

$$
\begin{aligned}
M & \approx G / G^{\varepsilon} \\
\pi_{1}(M) & \approx G^{\varepsilon} / G_{o}^{e}
\end{aligned}
$$

Let $Q=Q(M)$ denote the group of all maps $\alpha: M \rightarrow M$ that commute with the action of G. Then

$$
M \approx N^{\varepsilon} / G^{\varepsilon}
$$

where N^{ε} is the normalizer of G^{ε} in $G . G \times Q$ acts rationally by algebra automorphisms on $R=R(M)$, the algebra of regular functions on M.

Let (,) be the Killing form on \mathfrak{g} (or any fixed \mathfrak{g}-invariant nonsingular symmetric bilinear form on \mathfrak{g} that is negative definite on some compact form of $\mathfrak{g})$. For $x \in \mathfrak{g}$ define $\phi^{x} \in R$ by

$$
\phi^{x}(p)=(\nu(p), x) \quad, \quad \forall p \in M
$$

and set

$$
R[\mathfrak{g}]=R(M)[\mathfrak{g}]=\text { linear span of the functions } \phi^{x}, \text { where } x \in \mathfrak{g}
$$

Clearly, as vector spaces $R[\mathfrak{g}] \approx \mathfrak{g}$. Furthermore, if $\overline{\mathcal{O}}$ is the closure of \mathcal{O}, then the subalgebra $S \subset R$ generated by $R[\mathfrak{g}]$ can be identified with $R(\overline{\mathcal{O}})$.

Lemma 0.1. If Z is a normal algebraic variety, then the ring $R(Z)$ is integrally closed in the field $K(Z)$ of rational functions on Z.

Proposition 0.2. - There exists a unique affine variety X containing M as a Zariski open subset such that all regular functions on M extend to $X .{ }^{1}$

- The ring $R(M)=R(X)=R$ is a finitely generated \mathbb{C}-algebra and

$$
X=\operatorname{Spec}(R)
$$

- The commuting actions of G and Q on M extend uniquely to commuting algebraic actions of G and M on X.
- The covering map ν extends uniquely to a finite surjective G-equivariant morphism

$$
\bar{\nu}: X \rightarrow \overline{\mathcal{O}}
$$

- X is a normal variety and in fact X is the normalization of $\overline{\mathcal{O}}$ in the function field of M.
- G has finitely many orbits on X and each is even dimensional
- M is the unique Zariski dense open orbit of G on X and its boundary has codimension at least 2 .

We call X the normal closure of M.
2.2. The Right Scaling Action of \mathbb{C}^{*} on X and the graded Poisson Structure on $R(X)$. Recall that $\mathcal{O}=G \cdot e, M=G \cdot \varepsilon$. The Jacobson-Morosov Theorem says that there are $h, f \in \mathfrak{g}$ such that $\{e, f, h\}$ span an $\mathfrak{s l}(2, \mathbb{C})$ subalgebra of \mathfrak{g}, with

$$
[h, e]=2 e \quad, \quad[h, f]=-2 f \quad, \quad[e, f]=h
$$

Then $\exp (\mathbb{C} h) \subset N^{\varepsilon} \subset G$, and so defines a subgroup C of $Q=N^{\varepsilon} / G^{\varepsilon}$, the group of all maps $M \rightarrow M$ that commute with the action of G), and hence C acts on X. It turns out that the vector field corresponding to the infinitesimal action of C on \mathcal{O} is just two times the restriction of the Euler operator on $S(\mathfrak{g})$ to \mathcal{O} (the Euler operator happens to be a G-invariant differential operator tangent to every orbit).
Lemma 0.3. The action of C on X lifts the square of the Euler action on $\overline{\mathcal{O}}$ so that $\bar{\nu}\left(\overline{e^{t h}} x\right)=e^{2 t} \bar{\nu}(x)$ for all $t \in \mathbb{C}$.

Write $k \in \mathbb{Z}$, let

$$
R[k]=\left\{\phi \in R \mid\left(e^{t h} \phi\right)(x)=e^{t k} \phi(x)\right\}
$$

Proposition 0.4. - The action of C on $R=R(X)$ is completely reducible, and in fact,

$$
R=\bigoplus_{k=0}^{\infty} R[k]
$$

is a G-invariant algebra grading.

- Each $R[k]$ is a finite-dimensional G-stable subspace.
- $R[0]=\mathbb{C} \cdot 1$, where 1 is the constant function on X.
- There is a unique point $o \in X$ such that $\bar{\nu}(o)=0 \in \overline{\mathcal{O}}$. This o is the unique G-fixed point of x and also the unique C-fixed point of x.
- Let $\mathfrak{m} \subset R$, be the maximal ideal at o. Then

$$
\mathfrak{m}=\bigoplus_{k=1}^{\infty} R[k]
$$

and also \mathfrak{m} is the sum in R of all non-trivial G-modules.

- If the degree of the cover v is odd (e.g., if $M=\mathcal{O}$), then $R[k]=0$ if k is odd.

[^0]Recall that an adjoint orbit admits a canonical G-invariant symplectic form $\omega_{\mathcal{O}}$. But then the pullback of $\omega=\omega_{M}=\nu^{*}\left(\omega_{\mathcal{O}}\right)$ defines a symplectic form on M. Each $\phi \in R=R[M]=R[X]$ then defines a a Hamiltonian vector field ξ_{ϕ} on M by

$$
\left.\xi_{\phi}\right\rfloor \omega=d \phi
$$

Then R is a Poisson algebra with Poisson bracket given by

$$
\{\phi, \psi\}=\xi_{\phi} \psi=\omega(d \phi, d \psi)
$$

Proposition 0.5. The Poisson bracket established above make M a Hamiltonian G-space. Moreover,

- The right scaling action on M scales ω so that

$$
\{R[k], R[l]\} \subset R[k+l-2]
$$

- The map $\rho: \mathfrak{g} \rightarrow R^{2}, \rho(x)=\phi^{x}$ is a Lie algebra homomorphism.
- $R[2]+R[1]+R[0]$ is the unique maximal finite dimensional subalgebra of R containing $R[\mathfrak{g}]=\rho(\mathfrak{g})$
- If \mathfrak{g} is semisimple, then $R[2]$ is semisimple. If \mathfrak{g} is simple, then $R[2]$ is simple.
- If $R[1] \neq 0$, then the Poisson bracket gives $R[1]+R[0]$ the structure of a Heisenberg algebra and the bracket operation of $R[2]$ on $R[1]$ defines a Lie algebra surjection

$$
\delta: R[2] \rightarrow \mathfrak{s p}(2 n, \mathbb{C}) \quad, \quad 2 n=\operatorname{dim} R[1]
$$

Now it is important to note that at this point we have concrete realization of the algebraic variety X (other than as $\operatorname{Spec}(R(M)))$. What makes everything about $R[2]$ computable is the idea of Algebraic Frobenius Reciprocity developed in Kostant's famous paper on rings of polynomials over \mathfrak{g}.
Fact 0.6 (Algebraic Frobenius Reciprocity). For every G-module V there is a G-linear isomorphism

$$
t: V^{G^{\varepsilon}} \rightarrow \operatorname{Hom}_{G}\left(V^{*}, R\left(G / G^{\varepsilon}\right)\right)
$$

defined by

$$
t(v)(\gamma)(g \cdot \varepsilon)=\langle g \cdot v, \gamma\rangle \quad, \quad \forall g \in G \quad, \quad \forall v \in V^{G^{\varepsilon}} \quad, \quad \gamma \in V^{*}
$$

Lemma 0.7. For every G-module V and $k \in \mathbb{Z}$, t defines by restriction of $V^{G^{\varepsilon}}[k]$ a linear isomorphism

$$
t_{k}: V^{G^{\varepsilon}}[k] \rightarrow \operatorname{Hom}\left(V^{*}, R[k]\right)
$$

In other words, we can explicitly enumerate what \mathfrak{g}-types appear in $R[k]$.
Example 0.8 . Let $\mathfrak{g}=\mathfrak{s l}(3, \mathbb{C})$ and let M be the simply-connected 3-fold cover of the principle nilpotent orbit \mathcal{O} of \mathfrak{g}. Let $V \approx \mathbb{C}^{3}$ be the standard representation, so that h has eigenvalues $-2,0$, and 2 on V. One finds that the spaces

$$
V^{\mathfrak{g}^{\varepsilon}}[2] \quad, \quad\left(\wedge^{2} V\right)^{\mathfrak{g}^{\varepsilon}}[2] \quad, \quad \text { and } \quad(\mathfrak{g})^{\mathfrak{g}^{\varepsilon}}[2]
$$

are all 1-dimensional, and so the simple modules $\mathbb{C}^{3}, \wedge^{2} \mathbb{C}^{3}$, and \mathfrak{g} all occur exactly once in $R[2]$. Furthermore, if \mathfrak{q}_{1} and \mathfrak{q}_{2} are submodules of $R[2]$ carrying, respectively, \mathbb{C}^{3} and $\wedge^{2} \mathbb{C}^{3}$. Then $\mathfrak{r}=\mathfrak{g}+\mathfrak{q}_{1}+\mathfrak{q}_{2}$ is a 14 -dimensional algebra semisimple algebra of rank 2 . This already limits \mathfrak{r} to \mathfrak{g}_{2}.

[^0]: ${ }^{1}$ It seems to me that the condition that the regular functions on M be extendable to regular functions of the variety in which it embeds densely is really the crux of the utility such an embedding, and so this condition is a very natural hypothesis. It is remarkable, therefore, that from this requirement alone, we get a unique candidate for X.

