Shared Orbits

OSU Lie Groups Seminar

November ,2003

1. Introduction/Motivation

For some time now I've been trying to get a handle on a means of specifying the annihilators of unipotent representations. The basic prototype of the what I have been looking for is Devra Garfinkle's description of the generators of the annihilators of the minimal representations.

Let G be a simply-connected complex Lie group with Lie algebra \mathfrak{g} . Let \mathcal{N} be the cone of nilpotent elements of \mathfrak{g} . It is well known that \mathcal{N} consists of only finitely many G orbits, and that there is a unique nilpotent orbit \mathcal{O}_{\min} of minimal dimension. In fact, one can explicitly describe the polynomial generators of the radical ideal in $S(\mathfrak{g})$ corresponding to $\overline{\mathcal{O}}_{\min}$. Let F_{μ} denote the irreducible finite dimensional representation of \mathfrak{g} with highest weight μ , and let λ be the highest root of \mathfrak{g} . Then the space $S^2(\mathfrak{g})$ of homogeneous polynomials of degree two decomposes under the adjoint action of G as

$$S^{2}\left(\mathfrak{g}\right) \approx F_{2\lambda} \oplus F_{0} \oplus F_{\mu_{1}} \oplus \cdots \oplus F_{\mu_{k}}$$

(the point being that the summands corresponding to the trivial representation and the representation with highest weight 2λ always appear). Then

$$I_{\mathcal{O}_{\min}} = S\left(g\right) \left(F_0 \oplus F_{\mu_1} \oplus \cdots \oplus F_{\mu_k}\right)$$

Let π_{\min} be the unipotent representation of G attached to the minimal orbit. Then it is known that π_{\min} is unitary and the annihilator of π_{\min} (the so-called Joseph ideal) is generated by

$$Sym\left((F_0 - \lambda_{\min}) \oplus F_{\mu_1} \oplus \cdots \oplus F_{\mu_k}\right)$$

where $Sym: S(\mathfrak{g}) \to U(\mathfrak{g})$ is the symmeterizer map. (This is essentially Garfinkle's result.)

In trying to generalize this picture for other nilpotent orbits and their corresponding unipotent representations one eventually has to confront a problematic example discovered by Joseph: the 8-dimensional nilpotent orbit \mathcal{O}_8 of G_2 . It turns out that there are a number of peculiarities associated with this orbit:

- There are two completely prime primitive ideals attached to this orbit (only one of which corresponds to a unitary representation).
- One of these ideals (curiously enough, the one annihilating a unitary representation of G) has the property that Gr(J) is not prime (because $Gr(J) \neq \sqrt{Gr(J)}$).
- The closure of \mathcal{O}_8 is not a normal variety, but \mathcal{O}_8 embeds densely in the minimal orbit of $B_3 \approx \mathfrak{so}(7,\mathbb{C})$ which is a normal variety, and the unitary representation attached to \mathcal{O}_8 can be realized as the (irreducible!) restriction of the minimal representation of B_3 to G_2 .

It turns out also that the 10-dimensional nilpotent orbit of G_2 embeds densely in the minimal orbit of a larger simple group (in this case $D_4 \approx \mathfrak{so}(8,\mathbb{C})$). Moreover, the minimal representation of D_4 upon restriction to G_2 reveals a sort of dual pair theta correspondence: g_2 is the subalgebra of fixed points for the outer automorphisms corresponding to the S_3 symmetry ("triality") of the Dynkin diagram of D_4 and

$$\pi_{\min,\mathfrak{so}(8)}\big|_{\mathfrak{g}_2\times S_3} = \bigoplus_{\sigma\in\widehat{S}_3} V_{\sigma}\otimes E_{\sigma}$$

Here the V_{σ} comprise the special unipotent representations with infinitesimal character $\omega_1 + \omega_2$ and E_{σ} is the irreducible S_3 -module corresponding to σ .

This situation raised a bunch of questions for me; the main one being how prevalent is this sort of phenomenon; which in turn had two parts:

2. NORMALITY AND SHARED ORBITS (BRYLINSKI/KOSTANT)

• When does one have dense embeddings

$$\mathfrak{g}\supset\mathcal{O}\hookrightarrow\mathcal{O}'\subset\mathfrak{g}'$$

of one nilpotent orbit into a nilpotent orbit of a larger Lie algebra. (I should remark that I was interested in this because the annihilators of a non-minimal unipotent representation of the smaller group might be most easily revealed by studying the embedding of $U(\mathfrak{g})$ into the Joseph ideal of $U(\mathfrak{g}')$.

• Is there always an accompanying dual pair phenomenon that could be used to provide realizations of non-minimal unipotent representations?

Unfortunately, the answers to both questions have already been attained. R. Brylinski and Kostant answered the first, and Jing-Song Huang answered the second (at least for simple complex groups). But it's such a pretty story, I thought it be a nice topic for a Lie groups seminar.

2. Normality and Shared Orbits (Brylinski/Kostant)

The following is a outline of how Brylinski and Kostant classified of dense embeddings of the form

 $(2.1) \qquad \qquad \mathfrak{g} \supset \mathcal{O} \hookrightarrow \mathcal{O}' \subset \mathfrak{g}'$

with \mathfrak{g} a subalgebra of \mathfrak{g}' . Although they considered the general case when \mathfrak{g} is a semisimple complex Lie algebra, in this outline I'll mostly stick to the case when \mathfrak{g} is simple (because in the end, it turns out that if \mathfrak{g} is simple, then a dense embedding like (2.1) is only possible when \mathfrak{g}' is also simple - and that if \mathfrak{g} is semisimple, then the allowed embeddings are effectively enumerated simple factor by simple factor).

2.1. Normal Closures of Orbit Coverings. Let G be a simply connected semisimple complex Lie group with Lie algebra \mathfrak{g} . Let \mathcal{O} be the adjoint orbit of a nilpotent element $e \in \mathfrak{g}$, and let

$$\nu: M \to \mathcal{C}$$

be a G-homogeneous covering and choose $\varepsilon \in M$ such that $\nu(\varepsilon) = e$. Then

$$G_o^e \subset G^\varepsilon \subset G^e$$

and

$$\begin{array}{rcl} M &\approx& G/G^{\varepsilon} \\ \pi_1\left(M\right) &\approx& G^{\varepsilon}/G^e_o \end{array}$$

Let Q = Q(M) denote the group of all maps $\alpha: M \to M$ that commute with the action of G. Then

$$M \approx N^{\varepsilon}/G^{\varepsilon}$$

where N^{ε} is the normalizer of G^{ε} in G. $G \times Q$ acts rationally by algebra automorphisms on R = R(M), the algebra of regular functions on M.

Let (,) be the Killing form on \mathfrak{g} (or any fixed \mathfrak{g} -invariant nonsingular symmetric bilinear form on \mathfrak{g} that is negative definite on some compact form of \mathfrak{g}). For $x \in \mathfrak{g}$ define $\phi^x \in R$ by

$$\phi^{x}(p) = (\nu(p), x) \qquad , \qquad \forall \ p \in M$$

and set

 $R[\mathfrak{g}] = R(M)[\mathfrak{g}]$ = linear span of the functions ϕ^x , where $x \in \mathfrak{g}$

Clearly, as vector spaces $R[\mathfrak{g}] \approx \mathfrak{g}$. Furthermore, if $\overline{\mathcal{O}}$ is the closure of \mathcal{O} , then the subalgebra $S \subset R$ generated by $R[\mathfrak{g}]$ can be identified with $R(\overline{\mathcal{O}})$.

LEMMA 0.1. If Z is a normal algebraic variety, then the ring R(Z) is integrally closed in the field K(Z) of rational functions on Z.

2. NORMALITY AND SHARED ORBITS (BRYLINSKI/KOSTANT)

PROPOSITION 0.2. • There exists a unique affine variety X containing M as a Zariski open subset such that all regular functions on M extend to X^{1}

• The ring R(M) = R(X) = R is a finitely generated \mathbb{C} -algebra and

$$X = Spec\left(R\right)$$

- The commuting actions of G and Q on M extend uniquely to commuting algebraic actions of G and M on X.
- The covering map ν extends uniquely to a finite surjective G-equivariant morphism

$$\overline{\nu}: X \to \overline{\mathcal{O}}$$

- X is a normal variety and in fact X is the normalization of $\overline{\mathcal{O}}$ in the function field of M.
- G has finitely many orbits on X and each is even dimensional
- M is the unique Zariski dense open orbit of G on X and its boundary has codimension at least 2.

We call X the normal closure of M.

2.2. The Right Scaling Action of \mathbb{C}^* on X and the graded Poisson Structure on R(X). Recall that $\mathcal{O} = G \cdot e$, $M = G \cdot \varepsilon$. The Jacobson-Morosov Theorem says that there are $h, f \in \mathfrak{g}$ such that $\{e, f, h\}$ span an $\mathfrak{sl}(2, \mathbb{C})$ subalgebra of \mathfrak{g} , with

$$[h, e] = 2e$$
 , $[h, f] = -2f$, $[e, f] = h$

Then $\exp(\mathbb{C}h) \subset N^{\varepsilon} \subset G$, and so defines a subgroup C of $Q = N^{\varepsilon}/G^{\varepsilon}$, the group of all maps $M \to M$ that commute with the action of G), and hence C acts on X. It turns out that the vector field corresponding to the infinitesimal action of C on \mathcal{O} is just two times the restriction of the Euler operator on $S(\mathfrak{g})$ to \mathcal{O} (the Euler operator happens to be a G-invariant differential operator tangent to every orbit).

LEMMA 0.3. The action of C on X lifts the square of the Euler action on $\overline{\mathcal{O}}$ so that $\overline{\nu}\left(\overline{e^{th}}x\right) = e^{2t}\overline{\nu}(x)$ for all $t \in \mathbb{C}$.

Write $k \in \mathbb{Z}$, let

$$R[k] = \left\{ \phi \in R \mid \left(e^{th}\phi\right)(x) = e^{tk}\phi(x) \right\}$$

Proposition 0.4.

• The action of C on R = R(X) is completely reducible, and in fact,

$$R = \bigoplus_{k=0}^{\infty} R\left[k\right]$$

is a G-invariant algebra grading.

- Each R[k] is a finite-dimensional G-stable subspace.
- $R[0] = \mathbb{C} \cdot 1$, where 1 is the constant function on X.
- There is a unique point $o \in X$ such that $\overline{\nu}(o) = 0 \in \overline{\mathcal{O}}$. This o is the unique G-fixed point of x and also the unique C-fixed point of x.
- Let $\mathfrak{m} \subset R$, be the maximal ideal at o. Then

$$\mathfrak{m} = \bigoplus_{k=1}^{\infty} R\left[k\right]$$

and also \mathfrak{m} is the sum in R of all non-trivial G-modules.

• If the degree of the cover v is odd (e.g., if M = O), then R[k] = 0 if k is odd.

¹It seems to me that the condition that the regular functions on M be extendable to regular functions of the variety in which it embeds densely is really the crux of the utility such an embedding, and so this condition is a very natural hypothesis. It is remarkable, therefore, that from this requirement alone, we get a unique candidate for X.

Recall that an adjoint orbit admits a canonical G-invariant symplectic form $\omega_{\mathcal{O}}$. But then the pullback of $\omega = \omega_M = \nu^*(\omega_{\mathcal{O}})$ defines a symplectic form on M. Each $\phi \in R = R[M] = R[X]$ then defines a a Hamiltonian vector field ξ_{ϕ} on M by

$$\xi_{\phi} \mid \omega = d\phi$$

Then R is a Poisson algebra with Poisson bracket given by

$$\{\phi,\psi\} = \xi_{\phi}\psi = \omega \left(d\phi,d\psi\right)$$

PROPOSITION 0.5. The Poisson bracket established above make M a Hamiltonian G-space. Moreover,

• The right scaling action on M scales ω so that

$$\{R[k], R[l]\} \subset R[k+l-2]$$

- The map $\rho:\mathfrak{g}\to R^2$, $\rho(x)=\phi^x$ is a Lie algebra homomorphism.
- R[2] + R[1] + R[0] is the unique maximal finite dimensional subalgebra of R containing $R[\mathfrak{g}] = \rho(\mathfrak{g})$
- If \mathfrak{g} is semisimple, then R[2] is semisimple. If \mathfrak{g} is simple, then R[2] is simple.
- If $R[1] \neq 0$, then the Poisson bracket gives R[1] + R[0] the structure of a Heisenberg algebra and the bracket operation of R[2] on R[1] defines a Lie algebra surjection

 $\delta: R[2] \to \mathfrak{sp}(2n, \mathbb{C}) \qquad , \qquad 2n = \dim R[1]$

Now it is important to note that at this point we have concrete realization of the algebraic variety X (other than as Spec(R(M))). What makes everything about R[2] computable is the idea of Algebraic Frobenius Reciprocity developed in Kostant's famous paper on rings of polynomials over \mathfrak{g} .

FACT 0.6 (Algebraic Frobenius Reciprocity). For every G-module V there is a G-linear isomorphism

$$t: V^{G^{\varepsilon}} \to Hom_G(V^*, R(G/G^{\varepsilon}))$$

defined by

$$t\left(v\right)\left(\gamma\right)\left(g\cdot\varepsilon\right) = \left\langle g\cdot v,\gamma\right\rangle \qquad,\qquad\forall \ g\in G\quad,\quad\forall \ v\in V^{G^{\ast}}\quad,\quad\gamma\in V^{\ast}$$

LEMMA 0.7. For every G-module V and $k \in \mathbb{Z}$, t defines by restriction of $V^{G^{\varepsilon}}[k]$ a linear isomorphism $t_k: V^{G^{\varepsilon}}[k] \to Hom(V^*, R[k])$

In other words, we can explicitly enumerate what \mathfrak{g} -types appear in R[k].

EXAMPLE 0.8. Let $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{C})$ and let M be the simply-connected 3-fold cover of the principle nilpotent orbit \mathcal{O} of \mathfrak{g} . Let $V \approx \mathbb{C}^3$ be the standard representation, so that h has eigenvalues -2, 0, and 2 on V. One finds that the spaces

$$V^{\mathfrak{g}^{\varepsilon}}[2]$$
 , $(\wedge^2 V)^{\mathfrak{g}^{\varepsilon}}[2]$, and $(\mathfrak{g})^{\mathfrak{g}^{\varepsilon}}[2]$

are all 1-dimensional, and so the simple modules \mathbb{C}^3 , $\wedge^2 \mathbb{C}^3$, and \mathfrak{g} all occur exactly once in R[2]. Furthermore, if \mathfrak{q}_1 and \mathfrak{q}_2 are submodules of R[2] carrying, respectively, \mathbb{C}^3 and $\wedge^2 \mathbb{C}^3$. Then $\mathfrak{r} = \mathfrak{g} + \mathfrak{q}_1 + \mathfrak{q}_2$ is a 14-dimensional algebra semisimple algebra of rank 2. This already limits \mathfrak{r} to \mathfrak{g}_2 .