Whittaker vectors, a matrix calculus, and generalized hypergeometric functions

International Symposium on Representation Theory,
Systems of Differential Equations and their Related
Topics
July 2 - July 6, 2007
Sapporo, Japan
Birne Binegar
binegar@okstate.edu

I. Representation Theoretical Motivation

- Whittaker vectors and representation theory (Kostant, 1978)
- Theorem (Matumoto, 1987). Let \mathfrak{g} be a \mathbb{Z}-graded semisimple Lie algebra. Fix $s \in \mathbb{Z}_{>0}$, s.t. $\mathfrak{g}_{s} \neq 0$. Let $\mathfrak{n}_{s}=\sum_{i \geq s} \mathfrak{g}_{i}$, a nilpotent subalgebra of \mathfrak{g}. Choose $\psi \in\left(\mathfrak{g}_{s}\right)^{*}$, let $\widetilde{\psi}$ be its trivial extension to a character for \mathfrak{n}_{s}. Let M be a $U(\mathfrak{g})$ module, and put
$W h_{\mathfrak{n}_{s}, \psi}^{a l g}(M)=$
$\left\{w \in M^{*} \mid w(X \cdot v)=\psi(X) w(v) \forall X \in \mathfrak{n}, v \in M\right\}$.
Then for $W h_{\mathfrak{n}_{s}, \psi}^{\text {alg }}(M) \neq\{0\}, \psi$ must belong to the associated variety of M.

I. Representation Theoretical Motivation

- Whittaker vectors and representation theory (Kostant, 1978)
- Theorem (Matumoto, 1987). Let \mathfrak{g} be a \mathbb{Z}-graded semisimple Lie algebra. Fix $s \in \mathbb{Z}_{>0}$, s.t. $\mathfrak{g}_{s} \neq 0$. Let $\mathfrak{n}_{s}=\sum_{i \geq s} \mathfrak{g}_{i}$, a nilpotent subalgebra of \mathfrak{g}. Choose $\psi \in\left(\mathfrak{g}_{s}\right)^{*}$, let $\widetilde{\psi}$ be its trivial extension to a character for \mathfrak{n}_{s}. Let M be a $U(\mathfrak{g})$ module, and put
$W h_{\mathfrak{n}_{s}, \psi}^{a l g}(M)=$
$\left\{w \in M^{*} \mid w(X \cdot v)=\psi(X) w(v) \forall X \in \mathfrak{n}, v \in M\right\}$.
Then for $W h_{\mathfrak{n}_{s}, \psi}^{\text {alg }}(M) \neq\{0\}$, ψ must belong to the associated variety of M.
- Whittaker vectors detect size of a representation.

I. Representation Theoretical Motivation

- Whittaker vectors and representation theory (Kostant, 1978)
- Theorem (Matumoto, 1987). Let \mathfrak{g} be a \mathbb{Z}-graded semisimple Lie algebra. Fix $s \in \mathbb{Z}_{>0}$, s.t. $\mathfrak{g}_{s} \neq 0$. Let $\mathfrak{n}_{s}=\sum_{i \geq s} \mathfrak{g}_{i}$, a nilpotent subalgebra of \mathfrak{g}. Choose $\psi \in\left(\mathfrak{g}_{s}\right)^{*}$, let $\widetilde{\psi}$ be its trivial extension to a character for \mathfrak{n}_{s}. Let M be a $U(\mathfrak{g})$ module, and put
$W h_{\mathfrak{n}_{s}, \psi}^{a l g}(M)=$
$\left\{w \in M^{*} \mid w(X \cdot v)=\psi(X) w(v) \forall X \in \mathfrak{n}, v \in M\right\}$.
Then for $W h_{\mathfrak{n}_{s}, \psi}^{\text {alg }}(M) \neq\{0\}$, ψ must belong to the associated variety of M.
- Whittaker vectors detect size of a representation.

Fine tuning

Fine tuning

- G : noncompact, connected, real semisimple Lie group w/ finite center

Fine tuning

- G : noncompact, connected, real semisimple Lie group w/ finite center
- θ : Cartan involution, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ corresponding Cartan decomposition of $\mathfrak{g}=L i e_{\mathbb{R}}(G)$

Fine tuning

- G : noncompact, connected, real semisimple Lie group w/ finite center
- θ : Cartan involution, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ corresponding Cartan decomposition of $\mathfrak{g}=L i e_{\mathbb{R}}(G)$
- Fix a nilpotent element $e \in \mathfrak{g}$, a corresponding θ-stable S-triple $\{e, h, f\}$, and a corresponding decomposition

$$
\begin{aligned}
& \mathfrak{g}=\sum_{i} \mathfrak{g}_{i} \quad, \quad[h, Z]=i Z \quad \forall Z \in \mathfrak{g}_{i} \\
& \mathfrak{n}=\sum_{i>0} \mathfrak{g}_{i} \quad, \quad \mathfrak{l}=\mathfrak{g}_{0} \quad, \quad \overline{\mathfrak{n}}=\sum_{i<0} \mathfrak{g}_{i}
\end{aligned}
$$

Let $\chi_{e}(\cdot)=i B(f, \cdot)$ is the differential of an admissible unitary character for $N=\exp (\mathfrak{n})$.

- (π, V) : a continuous admissible representation of G on a Hilbert space V
- (π, V) : a continuous admissible representation of G on a Hilbert space V
- V^{∞} : the space of smooth vectors
- (π, V) : a continuous admissible representation of G on a Hilbert space V
- V^{∞} : the space of smooth vectors
- $V^{-\infty}$: the continuous dual of V^{∞} (w.r.t. usual Fréchet topology of V^{∞})

Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

For each \mathcal{O}_{i} in wave front set of (π, V) choose representative nilpotent element $e_{i} \in \mathcal{O}_{i}$ then

$$
W C(\pi) \equiv \sum_{i} \operatorname{dim}\left(W h_{\mathfrak{n}_{e_{i}}, \chi_{e_{i}}}^{\infty}(\pi)\right)\left[\overline{\mathcal{O}_{i}}\right]
$$

is related to the associated cycle / wave-front cycle of π.

Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

For each \mathcal{O}_{i} in wave front set of (π, V) choose representative nilpotent element $e_{i} \in \mathcal{O}_{i}$ then

$$
W C(\pi) \equiv \sum_{i} \operatorname{dim}\left(W h_{\mathfrak{n}_{e_{i}}, \chi_{e_{i}}}^{\infty}(\pi)\right)\left[\overline{\mathcal{O}_{i}}\right]
$$

is related to the associated cycle / wave-front cycle of π.
Significance: like Barbasch-Vogan conjecture (proved by Schmid-Vilonen) this conjecture lies right at a vital crossroads of the analytic, algebraic and geometric aspects of representation theory.

Smooth Whittaker Vectors for $S L(2, \mathbb{R})$

([Kostant, 2000])

- $V=L^{2}(0, \infty)$

Smooth Whittaker Vectors for $S L(2, \mathbb{R})$

([Kostant, 2000])

- $V=L^{2}(0, \infty)$
- $\operatorname{Lie}(G)=\operatorname{span}_{\mathbb{R}}(e, h, f)$

$$
e=i t \quad, \quad h=2 t \frac{d}{d t}+1 \quad, \quad f=i\left(t \frac{d^{2}}{d t^{2}}+\frac{d}{d t}-\frac{r^{2}}{4 t^{2}}\right)
$$

Smooth Whittaker Vectors for $S L(2, \mathbb{R})$

([Kostant, 2000])

- $V=L^{2}(0, \infty)$
- $\operatorname{Lie}(G)=\operatorname{span}_{\mathbb{R}}(e, h, f)$

$$
e=i t \quad, \quad h=2 t \frac{d}{d t}+1 \quad, \quad f=i\left(t \frac{d^{2}}{d t^{2}}+\frac{d}{d t}-\frac{r^{2}}{4 t^{2}}\right)
$$

- Explicit realization of K-finite vectors via Laguerre polynomials

Smooth Whittaker Vectors for $S L(2, \mathbb{R})$

([Kostant, 2000])

- $V=L^{2}(0, \infty)$
- $\operatorname{Lie}(G)=\operatorname{span}_{\mathbb{R}}(e, h, f)$

$$
e=i t \quad, \quad h=2 t \frac{d}{d t}+1 \quad, \quad f=i\left(t \frac{d^{2}}{d t^{2}}+\frac{d}{d t}-\frac{r^{2}}{4 t^{2}}\right)
$$

- Explicit realization of K-finite vectors via Laguerre polynomials
- Whittaker vectors for $e \longleftrightarrow \delta$-distributions

Smooth Whittaker Vectors for $S L(2, \mathbb{R})$

([Kostant, 2000])

- $V=L^{2}(0, \infty)$
- $\operatorname{Lie}(G)=\operatorname{span}_{\mathbb{R}}(e, h, f)$

$$
e=i t \quad, \quad h=2 t \frac{d}{d t}+1 \quad, \quad f=i\left(t \frac{d^{2}}{d t^{2}}+\frac{d}{d t}-\frac{r^{2}}{4 t^{2}}\right)
$$

- Explicit realization of K-finite vectors via Laguerre polynomials
- Whittaker vectors for $e \longleftrightarrow \delta$-distributions
- Whittaker vectors for $f \longleftrightarrow$ modified Bessel functions

Idea

- Explicit Hilbert space and concrete Whittaker functionals

$$
\left\langle\Psi_{r, y}, \varphi\right\rangle=\int_{0}^{\infty} J_{r}(2 \sqrt{y x}) \varphi(r) d x
$$

Idea

- Explicit Hilbert space and concrete Whittaker functionals

$$
\left\langle\Psi_{r, y}, \varphi\right\rangle=\int_{0}^{\infty} J_{r}(2 \sqrt{y x}) \varphi(r) d x
$$

- use of classical special function theory to get asymptotics of f-Whittaker vectors at 0 and ∞ to prove continuity of corresponding functionals on smooth vectors

Principal Series Representation

A family of principal series representations of $G L(2 n, \mathbb{R})$ (Speh, Sahi-Stein, Sahi-Kostant, et al.)

$$
\begin{aligned}
P & =\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \right\rvert\, A, B, C \in M_{n, n}(\mathbb{R})\right\} \\
L & =\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & C
\end{array}\right) \right\rvert\, A, C \in M_{n, n}(\mathbb{R})\right\} \\
N & =\left\{\left.\left(\begin{array}{ll}
1 & B \\
0 & 1
\end{array}\right) \right\rvert\, B \in M_{n, n}(\mathbb{R})\right\} \\
\bar{N} & =\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
C & 1
\end{array}\right) \right\rvert\, C \in M_{n, n}(\mathbb{R})\right\}
\end{aligned}
$$

Nonunitary principal series

Levi factor
$L=\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{2}\end{array}\right)\left(\begin{array}{cc}\varepsilon \mathbf{1} & 0 \\ 0 & \varepsilon \mathbf{1}\end{array}\right)\left(\begin{array}{cc}a \mathbf{1} & 0 \\ 0 & a^{-1} \mathbf{1}\end{array}\right)\left(\begin{array}{cc}z \mathbf{1} & 0 \\ 0 & z \mathbf{1}\end{array}\right)$
with $M_{1}, M_{2} \in S L(n, \mathbb{R}), \varepsilon= \pm 1, a, z \in \mathbb{R}_{>0}$.

Nonunitary principal series

Levi factor
$L=\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{2}\end{array}\right)\left(\begin{array}{cc}\varepsilon \mathbf{1} & 0 \\ 0 & \varepsilon \mathbf{1}\end{array}\right)\left(\begin{array}{cc}a \mathbf{1} & 0 \\ 0 & a^{-1} \mathbf{1}\end{array}\right)\left(\begin{array}{cc}z \mathbf{1} & 0 \\ 0 & z \mathbf{1}\end{array}\right)$
with $M_{1}, M_{2} \in S L(n, \mathbb{R}), \varepsilon= \pm 1, a, z \in \mathbb{R}_{>0}$.
Define character

$$
e^{\nu}(L)=a
$$

Nonunitary principal series

Levi factor
$L=\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{2}\end{array}\right)\left(\begin{array}{cc}\varepsilon \mathbf{1} & 0 \\ 0 & \varepsilon \mathbf{1}\end{array}\right)\left(\begin{array}{cc}a \mathbf{1} & 0 \\ 0 & a^{-1} \mathbf{1}\end{array}\right)\left(\begin{array}{cc}z \mathbf{1} & 0 \\ 0 & z \mathbf{1}\end{array}\right)$
with $M_{1}, M_{2} \in S L(n, \mathbb{R}), \varepsilon= \pm 1, a, z \in \mathbb{R}_{>0}$.
Define character

$$
e^{\nu}(L)=a
$$

$\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}(\mathfrak{a}, \mathfrak{n})} \alpha$, then $\rho=n^{2} \nu \in \mathfrak{a}^{*}$

Nonunitary principal series

Levi factor
$L=\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{2}\end{array}\right)\left(\begin{array}{cc}\varepsilon \mathbf{1} & 0 \\ 0 & \varepsilon \mathbf{1}\end{array}\right)\left(\begin{array}{cc}a \mathbf{1} & 0 \\ 0 & a^{-1} \mathbf{1}\end{array}\right)\left(\begin{array}{cc}z \mathbf{1} & 0 \\ 0 & z \mathbf{1}\end{array}\right)$
with $M_{1}, M_{2} \in S L(n, \mathbb{R}), \varepsilon= \pm 1, a, z \in \mathbb{R}_{>0}$.
Define character

$$
\begin{gathered}
e^{\nu}(L)=a \\
\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}(\mathfrak{a}, \mathfrak{n})} \alpha, \text { then } \rho=n^{2} \nu \in \mathfrak{a}^{*} \\
I(s)=\operatorname{Ind}_{M A N}^{G}\left(1 \otimes e^{-s \nu} \otimes 1\right) \\
\quad=\left\{\varphi \in C^{\infty}(G) \mid \varphi(\text { gman })=e^{-\left(s+n^{2}\right) \nu(\log (a))} \varphi(g)\right\}
\end{gathered}
$$

Noncompact picture:
$I(s) \approx C^{\infty}(\overline{\mathfrak{n}}) \approx M_{n, n}(\mathbb{R}) \approx \mathbb{R}^{n^{2}}$

Noncompact picture:

$$
\begin{aligned}
& I(s) \approx C^{\infty}(\overline{\mathfrak{n}}) \approx M_{n, n}(\mathbb{R}) \approx \mathbb{R}^{n^{2}} \\
& g=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \quad, \quad \bar{N} \ni \bar{n}(Y)=\exp \left(\begin{array}{cc}
0 & 0 \\
Y & 0
\end{array}\right) \\
& \pi(g) f(Y)=e^{-\left(s+n^{2}\right) \ln |\operatorname{det}(D-B Y)|} f\left([D-B Y]^{-1}[A Y-C]\right)
\end{aligned}
$$

Nilpotent Lie algebra actions

Nilpotent Lie algebra actions

$$
\begin{aligned}
& \pi\left(\left(\begin{array}{cc}
0 & 0 \\
E_{i j} & 0
\end{array}\right)\right)=-\frac{\partial}{\partial y_{i j}} \\
& \pi\left(\left(\begin{array}{cc}
0 & E_{i j} \\
0 & 0
\end{array}\right)\right)=\sum_{k, l} y_{k i} y_{j l} \frac{\partial}{\partial y_{k l}}+\left(s+n^{2}\right) y_{j i}
\end{aligned}
$$

Nilpotent Lie algebra actions

$$
\begin{aligned}
& \pi\left(\left(\begin{array}{cc}
0 & 0 \\
E_{i j} & 0
\end{array}\right)\right)=-\frac{\partial}{\partial y_{i j}} \\
& \pi\left(\left(\begin{array}{cc}
0 & E_{i j} \\
0 & 0
\end{array}\right)\right)=\sum_{k, l} y_{k i} y_{j l} \frac{\partial}{\partial y_{k l}}+\left(s+n^{2}\right) y_{j i}
\end{aligned}
$$

Fourier transform

$$
\widehat{f}(x)=\int_{M_{n, n}(\mathbb{R})} e^{i t r(x y)} f(y) d y
$$

Fourier transform

$$
\widehat{f}(x)=\int_{M_{n, n}(\mathbb{R})} e^{i t r(x y)} f(y) d y
$$

- geometrical realization on $L^{2}(\mathcal{O}, d \mu)$, with \mathcal{O} an L-orbit in $\mathfrak{n}, d \mu$ an L-equivariant measure on \mathcal{O}.

Fourier transform

$$
\widehat{f}(x)=\int_{M_{n, n}(\mathbb{R})} e^{i t r(x y)} f(y) d y
$$

- geometrical realization on $L^{2}(\mathcal{O}, d \mu)$, with \mathcal{O} an L-orbit in $\mathfrak{n}, d \mu$ an L-equivariant measure on \mathcal{O}.
- Barchini-Sepanski-Zierau : this even makes sense for the unitarizable degenerate principal series representations corresponding to the non-open orbits.

Fourier transform

$$
\widehat{f}(x)=\int_{M_{n, n}(\mathbb{R})} e^{i t r(x y)} f(y) d y
$$

- geometrical realization on $L^{2}(\mathcal{O}, d \mu)$, with \mathcal{O} an L-orbit in $\mathfrak{n}, d \mu$ an L-equivariant measure on \mathcal{O}.
- Barchini-Sepanski-Zierau : this even makes sense for the unitarizable degenerate principal series representations corresponding to the non-open orbits.
- representation of $\mathfrak{n}, \overline{\mathfrak{n}}$ on $L^{2}(\mathcal{O}, d \mu)_{\text {smooth }}$

$$
\begin{aligned}
& \pi\left(\left(\begin{array}{cc}
0 & 0 \\
E_{i j} & 0
\end{array}\right)\right)=i x_{i j} \\
& \pi\left(\left(\begin{array}{cc}
0 & E_{i j} \\
0 & 0
\end{array}\right)\right)=i \sum_{k=1}^{n} \sum_{\ell=1}^{n} x_{k \ell} \frac{\partial}{\partial x_{i k}} \frac{\partial}{\partial x_{\ell j}}-s \frac{\partial}{\partial x_{i j}}
\end{aligned}
$$

Smooth Whittaker functionals

Smooth Whittaker functionals

- Barchini-Zierau: smooth Whittaker functionals for $\overline{\mathfrak{n}}$ correspond to δ-functionals. (The subtle part is identifying the space of smooth vectors and that the δ-functionals are continuous linear functionals on that space.)

Smooth Whittaker functionals

- Barchini-Zierau: smooth Whittaker functionals for $\overline{\mathfrak{n}}$ correspond to δ-functionals. (The subtle part is identifying the space of smooth vectors and that the δ-functionals are continuous linear functionals on that space.)
- Goal: understand the smooth Whittaker functionals for \mathfrak{n} as a class of special functions: i.e. find explicit solutions of

$$
\pi(X) \Phi=\chi(X) \Phi \quad \forall X \in \mathfrak{n}
$$

with asymptotics such that

$$
f \mapsto \int_{\mathcal{O}} f \Phi d \mu_{\mathcal{O}}
$$

is a continuous linear functional on the space of smooth vectors.

Choose $\chi(X)=i \lambda \operatorname{tr}(X)=i B(f, X), f=\left(\begin{array}{cc}0 & 0 \\ I & 0\end{array}\right)$

$$
\begin{equation*}
\left(\sum_{k, \ell} \frac{\partial}{x_{\ell j}} x_{\ell k} \frac{\partial}{x_{i k}}-(s+n(n-1)) \frac{\partial}{\partial x_{i j}}-\lambda \delta_{i j}\right) \Phi=0 \tag{1}
\end{equation*}
$$

Set

$$
\mathbf{X}=\left(x_{i j}\right)_{\substack{1 \leq j \leq n \\ 1 \leq j \leq n}} \quad \mathbf{D}=\left(\frac{\partial}{\partial x_{j i}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}
$$

Set

$$
\mathbf{X}=\left(x_{i j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \quad \mathbf{D}=\left(\frac{\partial}{\partial x_{j i}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}
$$

- then (1) can be written more succinctly as

$$
(\mathbf{D X D}-(s+n(n-1)) \mathbf{D}-\lambda \mathbf{I}) \Phi=0
$$

Set

$$
\mathbf{X}=\left(x_{i j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \quad \mathbf{D}=\left(\frac{\partial}{\partial x_{j i}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}
$$

- then (1) can be written more succinctly as

$$
(\mathbf{D X D}-(s+n(n-1)) \mathbf{D}-\lambda \mathbf{I}) \Phi=0
$$

- Even better,

$$
\begin{equation*}
(\mathbf{X D X D}-(s+n(n-1)) \mathbf{X D}-\lambda \mathbf{X}) \Phi=0 \tag{1}
\end{equation*}
$$

Set

$$
\mathbf{X}=\left(x_{i j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \quad \mathbf{D}=\left(\frac{\partial}{\partial x_{j i}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}
$$

- then (1) can be written more succinctly as

$$
(\mathbf{D X D}-(s+n(n-1)) \mathbf{D}-\lambda \mathbf{I}) \Phi=0
$$

- Even better,

$$
\begin{equation*}
(\mathbf{X D X D}-(s+n(n-1)) \mathbf{X D}-\lambda \mathbf{X}) \Phi=0 \tag{1}
\end{equation*}
$$

- particularly natural looking generalization of the confluent hypergeometric equation ($n=1$).

Remark Under a change of coordinates corresponding to conjugation by $\mathbf{A} \in G L(n)$

$$
\left(x_{i j}\right) \rightarrow\left(x_{i j}^{\prime}\right) \equiv\left(\sum_{k, \ell} A_{i k} x_{k \ell}^{\prime} A_{\ell j}^{-1}\right)
$$

one has

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A}^{-1} \mathbf{X}^{\prime} \mathbf{A} \\
\mathbf{D} & =\mathbf{A}^{-1} \mathbf{D}^{\prime} \mathbf{A} \\
\mathbf{X D} & =\mathbf{A}^{-1} \mathbf{X}^{\prime} \mathbf{D}^{\prime} \mathbf{A}
\end{aligned}
$$

and so the system of PDEs (1) is actually conjugacy invariant.

Digression: a matrix calculus

Write

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}-t \mathbf{I}) & =\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n}\left(x_{i \sigma(i)}-t \delta_{i \sigma(i)}\right) \\
& =(-1)^{n} t^{n}+p_{1}(x) t^{n-1}+\cdots+p_{n}(x) \mathbf{I}
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{1}(x)=\operatorname{tr}(\mathbf{X}) \\
& p_{n}(x)=\operatorname{det}(\mathbf{X})
\end{aligned}
$$

and the intermediate $p_{i}(x)$ are the so-called generalized determinants.

Digression: a matrix calculus

Write

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}-t \mathbf{I}) & =\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n}\left(x_{i \sigma(i)}-t \delta_{i \sigma(i)}\right) \\
& =(-1)^{n} t^{n}+p_{1}(x) t^{n-1}+\cdots+p_{n}(x) \mathbf{I}
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{1}(x)=\operatorname{tr}(\mathbf{X}) \\
& p_{n}(x)=\operatorname{det}(\mathbf{X})
\end{aligned}
$$

and the intermediate $p_{i}(x)$ are the so-called generalized determinants.

Digression: a matrix calculus

Write

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}-t \mathbf{I}) & =\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n}\left(x_{i \sigma(i)}-t \delta_{i \sigma(i)}\right) \\
& =(-1)^{n} t^{n}+p_{1}(x) t^{n-1}+\cdots+p_{n}(x) \mathbf{I}
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{1}(x)=\operatorname{tr}(\mathbf{X}) \\
& p_{n}(x)=\operatorname{det}(\mathbf{X})
\end{aligned}
$$

and the intermediate $p_{i}(x)$ are the so-called generalized determinants.

Cayley-Hamilton theorem

- We set

$$
\phi_{i}=(-1)^{n+1} p_{i}
$$

so that the Cayley-Hamilton theorem takes the form

$$
\mathbf{X}^{n}=\phi_{1} \mathbf{X}^{n-1}+\phi_{2} \mathbf{X}^{n-2}+\cdots+\phi_{n} \mathbf{I}
$$

whence

$$
\begin{aligned}
\mathbf{X}^{n+q} & =\left(\mathbf{X}^{n}\right) \mathbf{X}^{q} \\
& =\phi_{1} \mathbf{X}^{n+q-1}+\phi_{2} \mathbf{X}^{n+q-2}+\cdots+\phi_{n} \mathbf{X}^{q}
\end{aligned}
$$

Cayley-Hamilton theorem

- We set

$$
\phi_{i}=(-1)^{n+1} p_{i}
$$

so that the Cayley-Hamilton theorem takes the form

$$
\mathbf{X}^{n}=\phi_{1} \mathbf{X}^{n-1}+\phi_{2} \mathbf{X}^{n-2}+\cdots+\phi_{n} \mathbf{I}
$$

whence

$$
\begin{aligned}
\mathbf{X}^{n+q} & =\left(\mathbf{X}^{n}\right) \mathbf{X}^{q} \\
& =\phi_{1} \mathbf{X}^{n+q-1}+\phi_{2} \mathbf{X}^{n+q-2}+\cdots+\phi_{n} \mathbf{X}^{q}
\end{aligned}
$$

Classical invariant theory?

Classical invariant theory?

Set

$$
\mathcal{F}[\mathbf{X}] \equiv \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

Classical invariant theory?

Set

$$
\mathcal{F}[\mathbf{X}] \equiv \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

- C-H Theorem gives embedding
polynomials $\mathbb{C}[\mathbf{X}] \subset \operatorname{span}_{\mathbb{C}[x]}{ }^{[}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]$

Classical invariant theory?

Set

$$
\mathcal{F}[\mathbf{X}] \equiv \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

- C-H Theorem gives embedding

$$
\text { polynomials } \mathbb{C}[\mathbf{X}] \subset \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

- Interplay with D $\quad \Longrightarrow \quad$ wonderful identities

Classical invariant theory?

Set

$$
\mathcal{F}[\mathbf{X}] \equiv \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

- C-H Theorem gives embedding polynomials $\mathbb{C}[\mathbf{X}] \subset \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]$
- Interplay with D $\quad \Longrightarrow \quad$ wonderful identities

Lemma $f \in \mathbb{C}[x]^{G}, \Phi \in \mathcal{F}(\mathbf{X})$, then

$$
\mathbf{D}(f \mathbf{\Phi})=(\mathbf{D} f) \boldsymbol{\Phi}+f(\mathbf{D} \boldsymbol{\Phi})
$$

Classical invariant theory?

Set

$$
\mathcal{F}[\mathbf{X}] \equiv \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]
$$

- C-H Theorem gives embedding polynomials $\mathbb{C}[\mathbf{X}] \subset \operatorname{span}_{\mathbb{C}[x]^{G}}\left[\mathbf{I}, \mathbf{X}, \ldots, \mathbf{X}^{n-1}\right]$
- Interplay with $\mathbf{D} \quad \Longrightarrow \quad$ wonderful identities

Lemma $f \in \mathbb{C}[x]^{G}, \Phi \in \mathcal{F}(\mathbf{X})$, then

$$
\mathbf{D}(f \boldsymbol{\Phi})=(\mathbf{D} f) \boldsymbol{\Phi}+f(\mathbf{D} \boldsymbol{\Phi})
$$

- Remark: DX - XD $\neq \mathrm{I}$.

Lemma $X \mathbf{X D} \phi_{q}=\mathbf{X}^{q}-\sum_{i=1}^{q-1} \phi_{i} \mathbf{X}^{q-i}$

Lemma XD $\phi_{q}=\mathbf{X}^{q}-\sum_{i=1}^{q-1} \phi_{i} \mathbf{X}^{q-i}$
Lemma XD $\left(\mathbf{X}^{q}\right)=\left(\mathbf{X D X}^{q-1}\right) \mathbf{X}+\left(\operatorname{tr}\left(\mathbf{X}^{q-1}\right)\right) \mathbf{X}$

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$
Corollary XD $\left(\mathbf{X}^{q}\right)=\mathbf{X}^{q}+\sum_{i=1}^{q-1} \psi_{q-i} \mathbf{X}^{q}$

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$
Corollary XD $\left(\mathbf{X}^{q}\right)=\mathbf{X}^{q}+\sum_{i=1}^{q-1} \psi_{q-i} \mathbf{X}^{q}$
Lemma XD $\psi_{q}=q \mathbf{X}^{q}$

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$
Corollary XD $\left(\mathbf{X}^{q}\right)=\mathbf{X}^{q}+\sum_{i=1}^{q-1} \psi_{q-i} \mathbf{X}^{q}$
Lemma XD $\psi_{q}=q \mathbf{X}^{q}$
Lemma

$$
\psi_{i}=\operatorname{det}\left[\begin{array}{rrrrr}
\phi_{1} & 1 & 0 & \cdots & 0 \\
-2 \phi_{2} & \phi_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & 1 \\
(-1)^{q+1} q \phi_{q} & (-1)^{q} \phi_{q-1} & \cdots & \cdots & \phi_{1}
\end{array}\right]
$$

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$
Corollary XD $\left(\mathbf{X}^{q}\right)=\mathbf{X}^{q}+\sum_{i=1}^{q-1} \psi_{q-i} \mathbf{X}^{q}$
Lemma XD $\psi_{q}=q \mathbf{X}^{q}$
Lemma

$$
\psi_{i}=\operatorname{det}\left[\begin{array}{rrrrr}
\phi_{1} & 1 & 0 & \cdots & 0 \\
-2 \phi_{2} & \phi_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & 1 \\
(-1)^{q+1} q \phi_{q} & (-1)^{q} \phi_{q-1} & \cdots & \cdots & \phi_{1}
\end{array}\right]
$$

(analogous to formula relating power symmetric functions to elementary symmetric functions - that goes back to Newton!)

Definition: $\psi_{q} \equiv \operatorname{tr}\left(\mathbf{X}^{q}\right)$
Corollary XD $\left(\mathbf{X}^{q}\right)=\mathbf{X}^{q}+\sum_{i=1}^{q-1} \psi_{q-i} \mathbf{X}^{q}$
Lemma XD $\psi_{q}=q \mathbf{X}^{q}$
Lemma

$$
\psi_{i}=\operatorname{det}\left[\begin{array}{rrrrr}
\phi_{1} & 1 & 0 & \cdots & 0 \\
-2 \phi_{2} & \phi_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \ddots & 1 \\
(-1)^{q+1} q \phi_{q} & (-1)^{q} \phi_{q-1} & \cdots & \cdots & \phi_{1}
\end{array}\right]
$$

(analogous to formula relating power symmetric functions to elementary symmetric functions - that goes back to Newton!)

Lemma For any partition $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots n^{m_{n}}\right)$ set

$$
c(\lambda)=\frac{\left(\sum_{i=1}^{n} m_{i}\right)!}{\prod_{i=1}^{n} m_{i}!}
$$

and set
$\xi_{n, q, i}= \begin{cases}\phi_{n-i} & q=0 \\ \sum_{\lambda \in \mathcal{P}_{q}} c(\lambda) \phi_{\lambda_{1}} \cdots \phi_{\lambda_{k}} \phi_{n} & i=0 \\ \sum_{j=q-i}^{q} \sum_{\lambda \in \mathcal{P}_{j}} c(\lambda) \phi_{\lambda_{1}} \cdots \phi_{\lambda_{k}} \phi_{n-i-j+q} & i=1, \ldots, n-1\end{cases}$
Then, for $q=0,1, \ldots, n-1$,

$$
\mathbf{X}^{n+q}=\sum_{i=0}^{n-1} \xi_{n, q, i} \mathbf{X}^{i}
$$

Back to the Whittaker PDEs

$$
(\mathbf{X D X D}-(s+n(n-1)) \mathbf{X D}-\lambda \mathbf{X}) \Phi=0
$$

Look for conjugacy invariant solutions with Ansatz:

$$
\Phi=\sum a_{m_{1} \cdots m_{n}} \phi_{1}^{m_{1}+r_{1}} \cdots \phi_{n}^{m_{n}+r_{n}}
$$

Back to the Whittaker PDEs

$$
(\mathbf{X D X D}-(s+n(n-1)) \mathbf{X D}-\lambda \mathbf{X}) \Phi=0
$$

Look for conjugacy invariant solutions with Ansatz:

$$
\Phi=\sum a_{m_{1} \cdots m_{n}} \phi_{1}^{m_{1}+r_{1}} \cdots \phi_{n}^{m_{n}+r_{n}}
$$

- Matrix calculus identities together with linear independence of $\mathbf{I}, \mathbf{X}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{n-1}$ and algebraic independence of $\phi_{1}, \ldots, \phi_{n}$ yield an array of recursion relations and indicial equations for the exponents r_{1}, \ldots, r_{n}.

Back to the Whittaker PDEs

$$
(\mathbf{X D X D}-(s+n(n-1)) \mathbf{X D}-\lambda \mathbf{X}) \Phi=0
$$

Look for conjugacy invariant solutions with Ansatz:

$$
\Phi=\sum a_{m_{1} \cdots m_{n}} \phi_{1}^{m_{1}+r_{1}} \cdots \phi_{n}^{m_{n}+r_{n}}
$$

- Matrix calculus identities together with linear independence of $\mathbf{I}, \mathbf{X}, \mathbf{X}^{2}, \ldots, \mathbf{X}^{n-1}$ and algebraic independence of $\phi_{1}, \ldots, \phi_{n}$ yield an array of recursion relations and indicial equations for the exponents r_{1}, \ldots, r_{n}.
- Indicial equations turn out to be

$$
\begin{aligned}
r_{n}\left(r_{n}-s\right) & =0 \\
0 & =r_{n-1}=\cdots=r_{1}
\end{aligned}
$$

- Can establish a total ordering of recursion relations for $a_{m_{1} \ldots m_{n}}$ and demonstate unique formal solution with $\Phi(0)=1$.

Hypergeometric functions ${ }_{p} F_{q}$

Differential Equation:
$\left[E\left(E-b_{1}\right) \cdots\left(E-b_{q}\right)-x\left(E+a_{1}\right) \cdots\left(E+a_{p}\right)\right]{ }_{p} F_{q}=0$
where $E=x \frac{d}{d x}$.

Hypergeometric functions ${ }_{p} F_{q}$

Differential Equation:

$$
\left[E\left(E-b_{1}\right) \cdots\left(E-b_{q}\right)-x\left(E+a_{1}\right) \cdots\left(E+a_{p}\right)\right]{ }_{p} F_{q}=0
$$

where $E=x \frac{d}{d x}$.
Solution:

$$
{ }_{p} F_{q}\left(\begin{array}{lll}
a_{1} & \cdots & a_{p} \\
b_{1} & \cdots & b_{q}
\end{array} ; x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k} k!} x^{k}
$$

Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been studied since the 1950's (James, Muirhead,....);

Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been studied since the 1950's (James, Muirhead,....);
but starting with series expansions or integral representations rather than systems of PDEs. Differential equations came latter on a case by case basis.

Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been studied since the 1950's (James, Muirhead,....);
but starting with series expansions or integral representations rather than systems of PDEs. Differential equations came latter on a case by case basis.

Natural matrix calculus formulation

Set

$$
\mathbf{E}=\mathbf{X D}
$$

and consider matrix calculus hypergeometric equations of the form

$$
\left[\mathbf{E}\left(\mathbf{E}-b_{1}\right) \cdots\left(\mathbf{E}-b_{q}\right)-\mathbf{X}\left(\mathbf{E}+a_{1}\right) \cdots\left(\mathbf{E}+a_{p}\right)\right]{ }_{p} F_{q}=0
$$

Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been studied since the 1950's (James, Muirhead,....);
but starting with series expansions or integral representations rather than systems of PDEs. Differential equations came latter on a case by case basis.

Natural matrix calculus formulation

Set

$$
\mathbf{E}=\mathbf{X D}
$$

and consider matrix calculus hypergeometric equations of the form

$$
\left[\mathbf{E}\left(\mathbf{E}-b_{1}\right) \cdots\left(\mathbf{E}-b_{q}\right)-\mathbf{X}\left(\mathbf{E}+a_{1}\right) \cdots\left(\mathbf{E}+a_{p}\right)\right]{ }_{p} F_{q}=0
$$

Example

${ }_{2} F_{1}^{(d)}$, generalized Gauss hypergeometric function (Kaneko, Vilenkin-Klimyk)

$$
{ }_{2} F_{1}^{(d)}(a, b ; c, \mathbf{t}) \equiv \sum_{k=1}^{\infty} \sum_{|\lambda|=k} \frac{[a]_{\lambda}[b]_{\lambda}}{[c]_{\lambda} k!} C_{\lambda}^{(d)}(\mathbf{t})
$$

where $\mathbf{t} \in \mathbb{R}^{n}$, the $C_{\lambda}^{(d)}(\mathbf{t})$ are (a particular normalization of) the Jack symmetric polynomials, and

$$
[a]_{\lambda} \equiv \sum_{i=1}^{l(\lambda)}\left(a-\frac{d}{2}(i-1)\right)_{\lambda_{i}}
$$

$(a)_{k}=(a)(a+1) \cdots(a+k-1)$ being the usual
Pochhammer symbol.

Although the functions ${ }_{2} F_{1}^{(d)}$ are defined by their series expansions, one has
Theorem ([Kaneko, 1993]) ${ }_{2} F_{1}^{(d)}$ is the unique solution of

$$
\begin{align*}
0 & =t_{i}\left(1-t_{i}\right) \frac{\partial^{2} F}{\partial t_{i}^{2}}+ \tag{4}\\
& {\left[c-\frac{d}{2}(n-1)-\left(a+b+1-\frac{d}{2}(n-1)\right) t_{i}\right] \frac{\partial F}{\partial t_{i}} } \\
& +\frac{d}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{t_{i}\left(1-t_{i}\right)}{t_{i}-t_{j}} \frac{\partial F}{\partial t_{i}}-\frac{d}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{t_{j}\left(1-t_{j}\right)}{t_{i}-t_{j}} \frac{\partial F}{\partial t_{j}}-a b F
\end{align*}
$$

satisfying
(i) $F(\mathbf{t})$ is a symmetric function of t_{1}, \ldots, t_{n}
(ii) $F(\mathbf{t})$ is analytical at the origin and $F(\mathbf{0})=1$.

Proposition If F is a conjugacy invariant function analytic in the $\phi_{1}, \ldots, \phi_{n}$

$$
\begin{equation*}
\left[(\mathbf{X D})\left(\mathbf{X D}+c^{\prime}-1\right)-\mathbf{X}\left(\mathbf{X D}+a^{\prime}\right)\left(\mathbf{X D}+b^{\prime}\right)\right] F \tag{5}
\end{equation*}
$$

Then (5) is equivalent to (4) when $n=2, d=2$ and

$$
\begin{aligned}
a^{\prime} & =-a \\
b^{\prime} & =-b \\
c^{\prime} & =c+1
\end{aligned}
$$

explicit connection

Identities: If

$$
\Phi=\sum a_{m_{1} m_{2}} \phi_{1}^{m_{1}} \phi_{2}^{m_{2}}
$$

then

$$
\begin{aligned}
(\mathbf{X D}) \Phi & =\frac{\partial \Phi}{\partial \phi_{1}} \mathbf{X}+\phi_{2} \frac{\partial \Phi}{\partial \phi_{2}} \mathbf{I} \\
\mathbf{X}(\mathbf{X D}) \Phi & =\frac{\partial \Phi}{\partial \phi_{1}}\left(\phi_{1} \mathbf{X}+\phi_{2} \mathbf{I}\right)+\phi_{2} \frac{\partial \Phi}{\partial \phi_{2}} \mathbf{X}
\end{aligned}
$$

explicit connection

Identities: If

$$
\Phi=\sum a_{m_{1} m_{2}} \phi_{1}^{m_{1}} \phi_{2}^{m_{2}}
$$

then

$$
\begin{aligned}
(\mathbf{X D}) \Phi & =\frac{\partial \Phi}{\partial \phi_{1}} \mathbf{X}+\phi_{2} \frac{\partial \Phi}{\partial \phi_{2}} \mathbf{I} \\
\mathbf{X}(\mathbf{X D}) \Phi & =\frac{\partial \Phi}{\partial \phi_{1}}\left(\phi_{1} \mathbf{X}+\phi_{2} \mathbf{I}\right)+\phi_{2} \frac{\partial \Phi}{\partial \phi_{2}} \mathbf{X}
\end{aligned}
$$

Interpret the t_{1}, t_{2} as the eigenvalues of \mathbf{X}) and make a change of variable $\phi_{1}=t_{1}+t_{2}, \phi_{2}=t_{1} t_{2}$.

Summary/Moral

Summary/Moral

- Although simplistic, indeed, by virtue of its simplicity, this point of view provides a particularly natural transit between classical and modern special function theory;

Summary/Moral

- Although simplistic, indeed, by virtue of its simplicity, this point of view provides a particularly natural transit between classical and modern special function theory; making several of the hitherto hidden motifs (in particular, the roles of symmetric functions, invariant theory, representation theory) natural, manifest and purposeful.

Summary/Moral

- Although simplistic, indeed, by virtue of its simplicity, this point of view provides a particularly natural transit between classical and modern special function theory; making several of the hitherto hidden motifs (in particular, the roles of symmetric functions, invariant theory, representation theory) natural, manifest and purposeful.

Summary/Moral

- Although simplistic, indeed, by virtue of its simplicity, this point of view provides a particularly natural transit between classical and modern special function theory; making several of the hitherto hidden motifs (in particular, the roles of symmetric functions, invariant theory, representation theory) natural, manifest and purposeful.

Summary/Moral

- Although simplistic, indeed, by virtue of its simplicity, this point of view provides a particularly natural transit between classical and modern special function theory; making several of the hitherto hidden motifs (in particular, the roles of symmetric functions, invariant theory, representation theory) natural, manifest and purposeful.

