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Whittaker vectors and representation theory (Kostant,
1978)
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I. Representation Theoretical Motivation

Whittaker vectors and representation theory (Kostant,
1978)

Theorem (Matumoto, 1987). Let g be a Z-graded
semisimple Lie algebra. Fix s ∈ Z>0, s.t. gs 6= 0. Let
ns =

∑
i≥s gi, a nilpotent subalgebra of g. Choose

ψ ∈ (gs)
∗, let ψ̃ be its trivial extension to a character for

ns. Let M be a U (g) module, and put
Wh

alg
ns,ψ

(M) =

{w ∈M∗ | w (X · v) = ψ (X)w (v) ∀ X ∈ n , v ∈M}.
Then for Wh

alg
ns ,ψ

(M) 6= {0}, ψ must belong to the
associated variety of M .
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Fine tuning

G : noncompact, connected, real semisimple Lie group
w/ finite center

θ : Cartan involution, g = k⊕ p corresponding Cartan
decomposition of g = LieR (G)

Fix a nilpotent element e ∈ g, a corresponding θ-stable
S-triple {e, h, f}, and a corresponding decomposition

g =
∑

i

gi , [h, Z] = iZ ∀ Z ∈ gi

n =
∑

i>0

gi , l = g0 , n =
∑

i<0

gi

Let χe (·) = iB (f, ·) is the differential of an admissible
unitary character for N = exp (n).
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(π, V ) : a continuous admissible representation of G on a
Hilbert space V
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(π, V ) : a continuous admissible representation of G on a
Hilbert space V

V∞: the space of smooth vectors

V −∞: the continuous dual of V∞ (w.r.t. usual Fréchet
topology of V∞)
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Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 5/32



Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

For each Oi in wave front set of (π, V ) choose
representative nilpotent element ei ∈ Oi then

WC (π) ≡
∑

i

dim
(
Wh∞nei

,χei
(π)
) [
Oi
]

is related to the associated cycle / wave-front cycle of π.
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Conjecture/Desideratum

(Matumoto, Kawanaka, et al.)

For each Oi in wave front set of (π, V ) choose
representative nilpotent element ei ∈ Oi then

WC (π) ≡
∑

i

dim
(
Wh∞nei

,χei
(π)
) [
Oi
]

is related to the associated cycle / wave-front cycle of π.

Significance: like Barbasch-Vogan conjecture (proved
by Schmid-Vilonen) this conjecture lies right at a vital
crossroads of the analytic, algebraic and geometric
aspects of representation theory.
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Smooth Whittaker Vectors for ˜SL (2,R)

([Kostant, 2000])

V = L2 (0,∞)
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([Kostant, 2000])

V = L2 (0,∞)

Lie(G) = spanR(e, h, f)

e = it , h = 2t
d

dt
+ 1 , f = i

(
t
d2

dt2
+
d

dt
− r2

4t2

)

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 6/32



Smooth Whittaker Vectors for ˜SL (2,R)

([Kostant, 2000])

V = L2 (0,∞)

Lie(G) = spanR(e, h, f)

e = it , h = 2t
d

dt
+ 1 , f = i

(
t
d2

dt2
+
d

dt
− r2

4t2

)

Explicit realization of K-finite vectors via Laguerre
polynomials

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 6/32



Smooth Whittaker Vectors for ˜SL (2,R)

([Kostant, 2000])

V = L2 (0,∞)

Lie(G) = spanR(e, h, f)

e = it , h = 2t
d

dt
+ 1 , f = i

(
t
d2

dt2
+
d

dt
− r2

4t2

)

Explicit realization of K-finite vectors via Laguerre
polynomials

Whittaker vectors for e←→ δ-distributions

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 6/32



Smooth Whittaker Vectors for ˜SL (2,R)

([Kostant, 2000])

V = L2 (0,∞)

Lie(G) = spanR(e, h, f)

e = it , h = 2t
d

dt
+ 1 , f = i

(
t
d2

dt2
+
d

dt
− r2

4t2

)

Explicit realization of K-finite vectors via Laguerre
polynomials

Whittaker vectors for e←→ δ-distributions

Whittaker vectors for f ←→ modified Bessel functions
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Idea

Explicit Hilbert space and concrete Whittaker functionals

〈Ψr,y, ϕ〉 =

∫ ∞

0
Jr (2
√
yx)ϕ (r) dx
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Idea

Explicit Hilbert space and concrete Whittaker functionals

〈Ψr,y, ϕ〉 =

∫ ∞

0
Jr (2
√
yx)ϕ (r) dx

use of classical special function theory to get asymptotics
of f -Whittaker vectors at 0 and∞ to prove continuity of
corresponding functionals on smooth vectors
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Principal Series Representation

A family of principal series representations of GL (2n,R)
(Speh, Sahi-Stein, Sahi-Kostant, et al.)

P =

{(
A B

0 C

)
| A,B,C ∈Mn,n (R)

}

L =

{(
A 0

0 C

)
| A,C ∈Mn,n (R)

}

N =

{(
1 B

0 1

)
| B ∈Mn,n (R)

}

N =

{(
1 0

C 1

)
| C ∈Mn,n (R)

}
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Nonunitary principal series

Levi factor

L =

(
M1 0

0 M2

)(
ε1 0

0 ε1

)(
a1 0

0 a−1
1

)(
z1 0

0 z1

)

with M1,M2 ∈ SL (n,R), ε = ±1, a, z ∈ R>0.
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Nonunitary principal series

Levi factor

L =

(
M1 0

0 M2

)(
ε1 0

0 ε1

)(
a1 0

0 a−1
1

)(
z1 0

0 z1

)

with M1,M2 ∈ SL (n,R), ε = ±1, a, z ∈ R>0.

Define character
eν (L) = a

ρ = 1
2

∑
α∈∆+(a,n) α, then ρ = n2ν ∈ a∗

I (s) = IndGMAN

(
1⊗ e−sν ⊗ 1

)

=
{
ϕ ∈ C∞ (G) | ϕ (gman) = e−(s+n2)ν(log(a))ϕ (g)

}
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Noncompact picture:
I (s) ≈ C∞ (n) ≈Mn,n(R) ≈ Rn2
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Noncompact picture:
I (s) ≈ C∞ (n) ≈Mn,n(R) ≈ Rn2

g =

(
A B

C D

)
, N 3 n (Y ) = exp

(
0 0

Y 0

)

π (g) f (Y ) = e−(s+n2) ln|det(D−BY )|f
(
[D −BY ]−1 [AY − C]

)
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Nilpotent Lie algebra actions
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Nilpotent Lie algebra actions

π

((
0 0

Eij 0

))
= − ∂

∂yij

π

((
0 Eij

0 0

))
=
∑

k,l

ykiyjl
∂

∂ykl
+
(
s+ n2

)
yji
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Fourier transform

f̂ (x) =

∫

Mn,n(R)
eitr(xy)f (y) dy
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Fourier transform

f̂ (x) =

∫

Mn,n(R)
eitr(xy)f (y) dy

geometrical realization on L2 (O, dµ), with O an L-orbit in
n, dµ an L-equivariant measure on O.
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Fourier transform

f̂ (x) =

∫

Mn,n(R)
eitr(xy)f (y) dy

geometrical realization on L2 (O, dµ), with O an L-orbit in
n, dµ an L-equivariant measure on O.

Barchini-Sepanski-Zierau : this even makes sense for
the unitarizable degenerate principal series
representations corresponding to the non-open orbits.
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Fourier transform

f̂ (x) =

∫

Mn,n(R)
eitr(xy)f (y) dy

geometrical realization on L2 (O, dµ), with O an L-orbit in
n, dµ an L-equivariant measure on O.

Barchini-Sepanski-Zierau : this even makes sense for
the unitarizable degenerate principal series
representations corresponding to the non-open orbits.

representation of n, n on L2 (O, dµ)smooth

π

((
0 0

Eij 0

))
= ixij

π

((
0 Eij

0 0

))
= i

n∑

k=1

n∑

`=1

xk`
∂

∂xik

∂

∂x`j
− s ∂

∂xij
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Smooth Whittaker functionals

Barchini-Zierau: smooth Whittaker functionals for n

correspond to δ-functionals. (The subtle part is
identifying the space of smooth vectors and that the
δ-functionals are continuous linear functionals on that
space.)
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Smooth Whittaker functionals

Barchini-Zierau: smooth Whittaker functionals for n

correspond to δ-functionals. (The subtle part is
identifying the space of smooth vectors and that the
δ-functionals are continuous linear functionals on that
space.)

Goal: understand the smooth Whittaker functionals for n

as a class of special functions: i.e. find explicit solutions
of

π (X) Φ = χ (X) Φ ∀ X ∈ n

with asymptotics such that

f 7→
∫

O
fΦdµO

is a continuous linear functional on the space of smooth
vectors. Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 13/32



Choose χ (X) = iλtr (X) = iB(f,X) , f =

(
0 0

I 0

)



∑

k,`

∂

x`j
x`k

∂

xik
− (s+ n (n− 1))

∂

∂xij
− λδij


Φ = 0 (1)

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 14/32



Set

X = (xij)1≤i≤n
1≤j≤n

D =

(
∂

∂xji

)

1≤i≤n
1≤j≤n
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Set

X = (xij)1≤i≤n
1≤j≤n

D =

(
∂

∂xji

)

1≤i≤n
1≤j≤n

then (1) can be written more succinctly as

(DXD− (s+ n (n− 1))D− λI) Φ = 0
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then (1) can be written more succinctly as
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Set

X = (xij)1≤i≤n
1≤j≤n

D =

(
∂

∂xji

)

1≤i≤n
1≤j≤n

then (1) can be written more succinctly as

(DXD− (s+ n (n− 1))D− λI) Φ = 0

Even better,

(XDXD− (s+ n (n− 1))XD− λX) Φ = 0 (1)

particularly natural looking generalization of the
confluent hypergeometric equation (n = 1).
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Remark Under a change of coordinates corresponding to
conjugation by A ∈ GL (n)

(xij)→
(
x′ij
)
≡



∑

k,`

Aikx
′
k`A

−1
`j




one has

X = A
−1

X
′
A

D = A
−1

D
′
A

XD = A
−1

X
′
D

′
A

and so the system of PDEs (1) is actually conjugacy
invariant.
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Digression: a matrix calculus

Write

det (X− tI) =
∑

σ∈Sn

sgn (σ)
n∏

i=1

(
xiσ(i) − tδiσ(i)

)

= (−1)n tn + p1 (x) tn−1 + · · · + pn (x) I

where

p1 (x) = tr (X)

pn (x) = det (X)

and the intermediate pi (x) are the so-called generalized
determinants.
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Cayley-Hamilton theorem

We set
φi = (−1)n+1

pi

so that the Cayley-Hamilton theorem takes the form

X
n = φ1X

n−1 + φ2X
n−2 + · · · + φnI

whence

X
n+q = (Xn)Xq

= φ1X
n+q−1 + φ2X

n+q−2 + · · · + φnX
q
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Classical invariant theory?

Set
F [X] ≡ span

C[x]G
[
I,X, . . . ,Xn−1

]
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Classical invariant theory?

Set
F [X] ≡ span

C[x]G
[
I,X, . . . ,Xn−1

]

C-H Theorem gives embedding

polynomials C [X] ⊂ span
C[x]G

[
I,X, . . . ,Xn−1

]

Interplay with D =⇒ wonderful identities

Lemma f ∈ C [x]G, Φ ∈ F (X), then

D (fΦ) = (Df)Φ + f (DΦ)

Remark: DX−XD 6= I.
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Lemma XDφq = X
q −

∑q−1
i=1 φiX

q−i
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Lemma XDφq = X
q −

∑q−1
i=1 φiX

q−i

Lemma XD (Xq) =
(
XDX

q−1
)
X+

(
tr
(
X
q−1
))

X

Whittaker vectors, a matrix calculus, and generalized hypergeometric functions – p. 20/32



Definition: ψq ≡ tr (Xq)
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Definition: ψq ≡ tr (Xq)

Corollary XD (Xq) = X
q +

∑q−1
i=1 ψq−iX

q
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Definition: ψq ≡ tr (Xq)
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q +

∑q−1
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Definition: ψq ≡ tr (Xq)

Corollary XD (Xq) = X
q +

∑q−1
i=1 ψq−iX

q

Lemma XDψq = qXq

Lemma

ψi = det




φ1 1 0 · · · 0

−2φ2 φ1
. . . ...

... . . . . . . 0

... . . . 1

(−1)q+1
qφq (−1)q φq−1 · · · · · · φ1
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. . . ...

... . . . . . . 0

... . . . 1
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(analogous to formula relating power symmetric
functions to elementary symmetric functions - that goes
back to Newton!)
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Lemma XDψq = qXq

Lemma

ψi = det




φ1 1 0 · · · 0
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Lemma For any partition λ = (1m12m2 · · · nmn) set

c (λ) =

(∑n
i=1mi

)
!∏n

i=1mi!

and set

ξn,q,i =





φn−i q = 0∑
λ∈Pq

c (λ)φλ1
· · ·φλk

φn i = 0∑q
j=q−i

∑
λ∈Pj

c (λ)φλ1
· · · φλk

φn−i−j+q i = 1, . . . , n− 1

Then, for q = 0, 1, . . . , n− 1,

X
n+q =

n−1∑

i=0

ξn,q,iX
i
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Back to the Whittaker PDEs

(XDXD− (s+ n (n− 1))XD− λX) Φ = 0

Look for conjugacy invariant solutions with
Ansatz:

Φ =
∑

am1···mn
φm1+r1

1 · · · φmn+rn

n
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Back to the Whittaker PDEs

(XDXD− (s+ n (n− 1))XD− λX) Φ = 0

Look for conjugacy invariant solutions with
Ansatz:

Φ =
∑

am1···mn
φm1+r1

1 · · · φmn+rn

n

Matrix calculus identities together with linear
independence of I,X,X2, . . . ,Xn−1 and algebraic
independence of φ1, . . . , φn yield an array of recursion
relations and indicial equations for the exponents
r1, . . . , rn.
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Back to the Whittaker PDEs

(XDXD− (s+ n (n− 1))XD− λX) Φ = 0

Look for conjugacy invariant solutions with
Ansatz:

Φ =
∑

am1···mn
φm1+r1

1 · · · φmn+rn

n

Matrix calculus identities together with linear
independence of I,X,X2, . . . ,Xn−1 and algebraic
independence of φ1, . . . , φn yield an array of recursion
relations and indicial equations for the exponents
r1, . . . , rn.

Indicial equations turn out to be

rn (rn − s) = 0

0 = rn−1 = · · · = r1
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Can establish a total ordering of recursion relations for
am1...mn

and demonstate unique formal solution with
Φ(0) = 1.
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Hypergeometric functions pFq

Differential Equation:

[E (E − b1) · · · (E − bq)− x (E + a1) · · · (E + ap)] pFq = 0

where E = x
d

dx
.
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Hypergeometric functions pFq

Differential Equation:

[E (E − b1) · · · (E − bq)− x (E + a1) · · · (E + ap)] pFq = 0

where E = x
d

dx
.

Solution:

pFq

(
a1 · · · ap

b1 · · · bq
;x

)
=

∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bp)k k!

xk
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Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been
studied since the 1950’s (James, Muirhead,....,);
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Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been
studied since the 1950’s (James, Muirhead,....,);

but starting with series expansions or integral
representations rather than systems of PDEs.
Differential equations came latter on a case by case
basis.
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Generalized hypergeometric functions

Hypergeometric functions of matrix argument have been
studied since the 1950’s (James, Muirhead,....,);

but starting with series expansions or integral
representations rather than systems of PDEs.
Differential equations came latter on a case by case
basis.

Natural matrix calculus formulation
Set

E = XD

and consider matrix calculus hypergeometric equations
of the form

[E (E− b1) · · · (E− bq)−X (E + a1) · · · (E + ap)] pFq = 0
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Differential equations came latter on a case by case
basis.

Natural matrix calculus formulation
Set

E = XD

and consider matrix calculus hypergeometric equations
of the form
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Example

2F
(d)
1 , generalized Gauss hypergeometric function

(Kaneko, Vilenkin-Klimyk)

2F
(d)
1 (a, b; c, t) ≡

∞∑

k=1

∑

|λ|=k

[a]λ [b]λ
[c]λ k!

C
(d)
λ (t)

where t ∈ Rn, the C(d)
λ (t) are (a particular normalization of)

the Jack symmetric polynomials, and

[a]λ ≡
l(λ)∑

i=1

(
a− d

2
(i− 1)

)

λi

(a)k = (a) (a+ 1) · · · (a+ k − 1) being the usual
Pochhammer symbol.
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Although the functions 2F
(d)
1 are defined by their series

expansions, one has
Theorem ([Kaneko, 1993]) 2F

(d)
1 is the unique solution of

0 = ti (1− ti)
∂2F

∂t2i
+ (4)

[
c− d

2
(n− 1)−

(
a+ b+ 1− d

2
(n− 1)

)
ti

]
∂F

∂ti

+
d

2

n∑

j=1
j 6=i

ti (1− ti)
ti − tj

∂F

∂ti
− d

2

n∑

j=1
j 6=i

tj (1− tj)
ti − tj

∂F

∂tj
− abF

satisfying
(i) F (t) is a symmetric function of t1, . . . , tn
(ii) F (t) is analytical at the origin and F (0) = 1.
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Proposition If F is a conjugacy invariant function analytic
in the φ1, . . . , φn

[
(XD)

(
XD + c′ − 1

)
−X

(
XD + a′

) (
XD + b′

)]
F (5)

Then (5) is equivalent to (4) when n = 2, d = 2 and

a′ = −a
b′ = −b
c′ = c+ 1
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explicit connection

Identities: If
Φ =

∑
am1m2

φm1

1 φm2

2

then

(XD) Φ =
∂Φ

∂φ1
X+φ2

∂Φ

∂φ2
I

X (XD) Φ =
∂Φ

∂φ1
(φ1X + φ2I) + φ2

∂Φ

∂φ2
X
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explicit connection

Identities: If
Φ =

∑
am1m2

φm1

1 φm2

2

then

(XD) Φ =
∂Φ

∂φ1
X+φ2

∂Φ

∂φ2
I

X (XD) Φ =
∂Φ

∂φ1
(φ1X + φ2I) + φ2

∂Φ

∂φ2
X

Interpret the t1, t2 as the eigenvalues of X) and make a
change of variable φ1 = t1 + t2, φ2 = t1t2.
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Summary/Moral
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Summary/Moral

Although simplistic, indeed, by virtue of its simplicity, this
point of view provides a particularly natural transit
between classical and modern special function theory;
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Summary/Moral

Although simplistic, indeed, by virtue of its simplicity, this
point of view provides a particularly natural transit
between classical and modern special function theory;
making several of the hitherto hidden motifs (in particular,
the roles of symmetric functions, invariant theory,
representation theory) natural, manifest and purposeful.
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