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1. Introduction

Let g be a complex semisimple Lie algebra. (Everything I say will also be true for a complex reductive
Lie algebra with obvious but otherwise inessential embellishments.) Let h be some fixed Cartan subalgebra
of g, ∆ = ∆ (g, h) the set of roots of g with respect to h, Π a choice of simple roots for ∆ and ∆+ the
corresponding positive system. Throughout this talk, G will be the (complex) adjoint group of g and W
will be the Weyl group of g.

A subset ∆′ is a subsystem of ∆ if it is also a root system where the underlying vector space is spanR (∆′) ⊆
h∗ and the Euclidean inner product is just the restriction of the inner product on h∗ to vectors in spanR (∆′).
In the very near future, Huanrong is going to tell us how to explicitly identify all the subsystems of ∆ up to
W -conjugacy. Part of my agenda here today is to provide some motivations for such a classification. But
perhaps first I should give some illustrative examples,

Example 1.1. Let Γ be a subset of the simple roots Π and set

(1) WΓ := subgroup of W generated by the reflections sα, α ∈ Γ

(2) ∆Γ = WΓ · Γ = {α ∈ ∆ | wΓβ for some α1, . . . αk, β ∈ Γ}
Then ∆Γ is a subsystem of ∆. Moreover, Γ provides a simple base for ∆Γ. Moreover

(3) sΓ = 〈gα〉α∈∆Γ
≡ Lie subalgebra of g generated by the root spaces gα, α ∈ ∆Γ.

is a semisimple subalgebra of g. It is in fact the semisimple part of the standard Levi subalgebra lΓ

(4) lΓ := h⊕
⊕

α∈spanZ(Γ)

gα

In fact, every Levi subalgebra l of g is G-conjugate to some lΓ, and moreover

(5) G-conjugacy classes of Levi subalgebras 1 : 1←−−−−→ W -conjugacy classes of subsets of Π

Naturally enough, we call subsystem ∆Γ with Γ ⊂ Π, Levi subsystems. Unnaturally, though the convention
is to call the corresponding Weyl group WΓ a parabolic subgroup of W .

Example 1.2. Let Π = {α1, . . . , αr} be the simple roots and let α0 be the lowest root with respect to the
positive system defined by Π. The set

(6) Πe = {α0, α1, . . . , αr} = Π ∪ {α0}
is called the extended simple roots. Like the simple roots themselves, the roots in Πe are always mutually
obtuse

(7) 〈αi, αj〉 ≤ 0 whenever i 6= j

However, the roots in Πe are not linearly independent, so the “Dynkin diagram” formed from them will
not be the Dynkin diagram of a semisimple Lie algebra. Yet, as there is only one dependence relation
amongst the roots (viz., the canonical expression of α0 as a negative-integer linear combination of the
α1, . . . , αk), every proper subset of Πe will consist of mutually orthogonal linearly independent roots, and
so will correspond to the Dynkin diagram of a semisimple Lie algebra. In fact, if Γ ( Πe, then we have

• a reflection subgroups WΓ of W , via (1);
• a subsystem ∆Γ of ∆, via (2);
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• a semisimple subalgebra sΓ of g, via (3); and
• a reductivive subalgebra lΓ of g, via (4).

The reductive subalgebras lΓ in this case (Γ ( Πe) are called standard generalized Levi subalgebras. More
generally, a generalized Levi subalgebra is a subalgebra of g that is G-conjugate to a standard generalized
Levi subalgebras. Completing the analogy with Levi subalgebras we have

G-conjugacy classes of generalized Levi subalgebras 1 : 1←−−−−→ W -conjugacy classes of subsets of Πe

Example 1.3. The generalized Levi subalgebras of generalized Levi subalgebras will again be reductive
subalgebras of g. And so by iterating this process of spawning new subalgebras by taking subsets of the
extended simple roots of a previously found subalgebras we can produce even more subsystem of ∆ and
corresponding reductive subalgebras of g. Of course, once you take a proper subset of Πe and extend it
by the lowest root of the subsystem it generates you end up leaving the confines of Πe. But, nevertheless,
following this algorithm, you still end up with subsets Γ ⊂ ∆ with the properties

(8) 〈α, β〉 ≤ 0 if α, β ∈ Γ and α 6= β
(9) Γ is a linearly independent set.

and the formulas (1), (2), (3), (4) still yield respectively, a reflection subgroup WΓ of W , a subsystem ∆Γ

of ∆, a semisimple subalgebra sΓ of g, and a reductive subalgebra lΓ of g. Eventually this algorithm, which
is due to Borel and deSiebenthal, fails to produce any new Γ. The subalgebras lΓ, or actually the set of
G-conjugates of such subalgebras, so obtained, in fact, exhaust the set of reductive subalgebras of g of
maximal rank. Such subalgebras can be also characterized in another, very different, way: they correspond
precisely to the Lie subalgebras that are left invariant by the action of a semisimple element of G. (N.B.,
these subalgebras are not, in general, the stabilizers of a semisimple element of g. This unseemly discrepancy
is actually extremely useful, as such subalgebras are useful in detecting subtle properties of G-orbits in g).

Example 1.4. It is quite easy to see that the Weyl group of Bn is isomorphic to that of Cn. In fact, when
we write use the standard presentations

∆ (Bn) = {± (ei ± ej) | i = 1, . . . , n} ∪ {±ei | i = 1, . . . , n}
∆ (Cn) = {± (ei ± ej) | i = 1, . . . , n} ∪ {±2ei | i = 1, . . . , n}

of the corresponding root system the isomorphism WBn ←→WCn can be implemented by

sei ←→ s2ei , sei±ej ←→ sei±ej

which amounts to the interchange of short and long roots. One can define a similar interchanges between
the short and long roots of G2 and F4, by sending the long roots to themselves and rescaling the short roots
by ‖αlong‖2 / ‖αshort‖2.

In each case, the root system obtained by rescaling the short simple roots by ‖αlong‖2 / ‖αshort‖2 produces
a valid root system ∆∨, the root system dual to ∆, to which there corresponds also a simple Lie algebra g∨,
the Lie algebra dual of g. When g is simply-laced (meaning all root lengths are the same) then we simply
set ∆∨ = ∆, and g∨ = g.

Now let �∨ be the root system dual to ∆. One can apply the Borel-deSiebenthal algorithm to ∆∨ to get
a set of bases Γ for subsystems of ∆∨. Applying the inverse duality map ∆∨ −→ ∆, one obtains subsets
Γ ⊂ ∆ that retain the properties (8) and (9) and because of this allow one to attach to Γ a reflection
subgroup WΓ and a subsystem ∆Γ of ∆.

However, the subalgebras sΓ arising from a Γ∨ ∈ ∆∨, in general, fail to close with in the confines of the
root spaces gα, α ∈ ∆Γ. On the other hand, this extended Borel-deSiebenthall procedure does furnish one
with (at least one W -conjugacy class representative of) all the subsystems of ∆ and a representative of each
conjugacy class of the Coxeter subgroups of W .
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2. A Paradigm

Let me now return to the setting of Example 1, where Γ is a subset of Π. To Γ we can attach both a
subsystem ∆Γ and a Levi subalgebra lΓ.

Using ∆Γ we can also attach a particular irreducible representation of W , to Γ. This we do as follows. First
of all, Γ actually provides a basis of simple roots for ∆Γ, and so defines a positive system ∆+

Γ . Set

(9) pΓ (x) =
∏
α∈∆+

Γ

〈α, x〉 ∈ C [h]

Via results of Macdonald, pΓ is a homogeneous W -harmonic polynomial on h that generates an irreducible
representation of W : i.e. W acts irreducibly on the span of W -translates of pΓ. We denote by σΓ the
corresponding representation of W .

Next, using lΓ we can attach a particular nilpotent orbit in g to Γ. This is done as follows. Let pΓ = lΓ + u
be any extension of lΓ to a parabolic subalgebra of g. By well know results of Richardson, Lusztig and
Spaltenstein, inside G · u, there is a unique dense orbit OlΓ that is, in fact, independent of the particular
parabolic extension used. This is the Richardson orbit corresponding to lΓ. We shall denote it by OΓ.

We thus have the following picture,

Γ ⊂ Π −−→ lΓ −−→ OΓ

↓
∆Γ

↓
σΓ

and so a natural, tight, correspondence between certain nilpotent orbits and certain representations of W .

3. The Springer Correspondence

Let Ng denote the (finite) set of nilpotent orbits of g. In a seminal 1978 paper, T.A. Springer gave
a construction which attached to each irreducible representation of W , a particular G-equivariant local
system on a particular nilpotent orbit O ∈ N g..

Springer’s construction goes as follows. Starting with a nilpotent element X ∈ g, let BX be the variety of
all Borel subalgebras of g containing X. The stabilizer GX of X in G obviously preserves BX , and this
action in turn induces an action of GX on the cohomology of H∗ (BX ,C). Now the isotropy GX is in general

disconnected. It turns out that the identity component
(
GX
)o

of GXacts trivially on H∗ (BX ,C), and so

the component group of GX

A (X) ≡ GX/
(
GX
)o

has a well-defined action on H∗ (BX ,C).

Springer showed that there is also a natural action of W on H (BX ,C), and this action commutes with
that of A (X). In fact, in the top degree cohomology Hd (BX ,C), where d = dimBX , the representation of
A (X)×W decomposes as

Hd (BX ,C) ≈
⊕

µ∈Â(X)

mµχµ,X ⊗ σµ

where the σµ are irreducible representations of W for which

σµ ∼ σν ⇐⇒ χµ ∼ χν
Moreover, let {Xi}i∈I be a complete set of representatives of the nilpotent orbits in g. Then
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• Let {Xi}i∈I be a complete set of representatives of the nilpotent orbits of G. Then each σ ∈ Ŵ
appears as a σµ ∈ A (Xi) and for one and only one Xi and for one and only one µ ∈ Â (Xi).

• For any given Xi, there trivial representation 1A(Xi) ⊗ σ1A(Xi)
always occurs in the decomposition

Not all representations σ

This last statement leads to the Springer correspondence that attaches to each nilpotent orbit Xi the unique
representation .

sO : N ↪→ Ŵ : OX 7−→ σ1A(X)

The first statement yields the Springer parameterization of Ŵ , in which each irreducible representation of

W is uniquely specified by the orbit OX and the particular µ ∈ Â (X) for which mµ 6= 0.

Definition 3.1. An irreducible representation σ of W is said to be an orbit representation if its Springer

parameters are of the form
(
O,1A(O)

)
. We denote by Ŵorbit the set of orbit representations.

The Springer correspondence is thus a bijective correspondence between Ng and Ŵorbit, albeit a rather

artificial one if one has to rely on Definition 3.1 to identify Ŵorbit.

4. A Problem

The importance of the Springer correspondence to the developments in representation theory since the
1980’s can not be overstated. One striking example is its use in the classification of the primitive ideals
of U (g) (Joseph, Barbasch-Vogan). Another striking, but more subtle example, is the connection between
Goldie rank polynomials, and wave-front expansions of characters of irreducible admissible representations
is mitigated by the Springer correspondence (this was shown by D. King);.

Yet there is also something disturbingly awkward about the Springer parameterization, it as essentially
an a posteriori parameterization of W . For one doesn’t even know what Springer parameters are possible
until one computes Hd (BX ,C) for each nilpotent orbit X. (In this respect, it is like the Dynkin-Kostant
parameterization of nilpotent orbits via weighted Dynkin diagrams.)

On the other hand, in the paradigm discussed above, there was a very tight, in fact, a constructive correspon-

dence between Richardson orbits OΓ ⊂ g and the Macdonald representations σΓ ∈ Ŵ . This correspondence
OΓ ←→ σΓ, in fact, coincides with the restriction of the Springer correspondence to Richardson orbits. This
circumstance hints at some sort of hitherto invisible naturality in the Springer correspondence (which we
again point out is actually based on the identification of a certain family representations of W with Springer
parameters of a similar form.).

So here we pose a problem:

Problem 4.1. Let g be a semisimple Lie algebra. Can we find a common set of parameters P and con-
structions

C1 : P 1 : 1−−−−−−→ Ng

C2 : P 1 : 1−−−−−−→ Ŵorbit

so that C2 ◦ C−1
1 replicates the Springer correspondence?

Remark 4.1. For classical Lie algebras, both nilpotent orbits and Weyl group representations can be pa-
rameterized in terms of partitions. Moreover, there are algorithms for connecting the partition parameters
of nilpotent orbits with the partition parameters of the corresponding orbit representations of W . However,
these algorithms are different for each classical type, and are anyway unsuitable for handling the exceptional
Lie algebras. So, while such algorithms don’t really solve our problem in the desired generality, they do
hint that a solution might exist.
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5. Bala-Carter and Nilpotent Orbits

What makes the correspondence between Richardson orbits and the Macdonald representations so natural is
the coincidence of the basic combinatorial datums Γ from which both the orbits and the representations are
constructed. To prepare for a generalization of this correspondence, I will first recast the usual Bala-Carter
classification of nilpotent orbits in combinational terms.

The basic idea of the Bala-Carter classification is the observation that any nilpotent element X ∈ g, is
either a nilpotent element of a Levi subalgebra of g or not. A nilpotent element that is not contained in
any proper Levi subalgebra of g is called a distinguished nilpotent element. It turns out that if a nilpotent
element X of g is not distinguished then there is a unique (up to G-conjugacy) Levi subalgebra l of g for
which X is a distinguished element of l, and the set of nilpotent orbits of g is in a 1 : 1 correspondence
with the set of G-conjugacy classes of pairs (l, X) where l is a Levi subalgebra of g and X is a distinguished
element of l.

We have seen in Example 1 above that the set of G-conjugacy classes of Levi subalgebras is in a 1 : 1
correspondence with the set of W -conjugacy classes of subsets Γ of the simple roots of g. In fact, the
subsets Γ correspond directly to the simple roots of the corresponding Levi subalgebra. In our combinatorial
parameterization of nilpotent orbits we will simply use subsets of Π to parameterize Levi subalgebras.

What we need next is a combinatorial parameterization of the distinguished nilpotent orbits in a Levi
subalgebra lΓ. It turns out that the Ad (lΓ)-orbit of a distinguished element of lΓ is always a Richardson
orbit Rγ corresponding to some Levi subalgebra of l.γ of lΓ; where, naturally, γ ⊂ Γ. In fact, there is a very
simple criterion for a given subset γ of Γ to produce a distinguished Richardson orbit in lΓ :

Proposition 5.1. The Richardson orbit

Rγ := indlΓlγ
(
0lγ

)
is distinguished in lΓ if and only if

(10) |∆γ |+ |Γ| = #
{
λ ∈ ∆+

Γ | λ = α+ β ; α ∈ ∆γ , β ∈ Γ \ γ
}

Combining this result with remarks above we have

Proposition 5.2. The nilpotent orbits in g are in a 1 : 1 correspondence with the set of W -conjugacy
classes of pairs (Γ, γ) where Γ is a subset of Π and γ is a subset of Γ satisfying (10).

What is particularly nice about this parameterization is that is a constructive parameterization; which is
to say, the orbit corresponding to (Γ, γ) can be constructed directly from its parameters: in fact, there is a
remarkably succinct formula

O(Γ,γ) = incglΓ

(
indlΓlγ

(
0lγ

))
Here

incgl (Ol) := G · Ol ≡ {Z ∈ g | Z = g ·X ′ for some g ∈ G and some X ′ ∈ Ol. } .

and

indgl (Ol) := the unique dense orbit in G · (Ol + u)

whereu is the nilradical of any extension of l to a parabolic subalgebra of g (cf. the book by Collingwood-
McGovern or the original paper by Lusztig and Spaltenstein).

Notation 5.3. We denote by BC = BCg ,any complete set of combinatorial Bala-Carter parameters for Ng.
That is to say, BC consists of pairs (Γ, γ) where Γ ⊂ Π and γ is a subset of Γ satisfying (10); and the map

C : BC −→ Ng : (Γ, γ) 7−→ incglΓ

(
indlΓlγ

(
0lγ

))
is a bijection.
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To construct a set of combinatorial Bala-Carter parameters, we just need to let the Γ’s run through some
complete set of representatives of Π/ ∼W and then for each representative Γ, figure out the subsets γ ∈ Γ
that satisfy (10) and choose one representative from each WΓ conjugacy class of such γ’s.

6. The Barbasch-Vogan Duality Map

Having arrived at a nice constructive parameterization of nilpotent orbits in terms of certain pairs (Γ, γ),
the next step in our program is construct from these same parameters, particular representations of W , in
such a way that the correspondence between the orbits O(Γ,γ) and the Weyl group representations σ(Γ,γ)

is compatible with the Springer correspondence. Alas, we shall not achieve this. However, what we
will accomplish is intrinsic characterization of the orbit representations of W in terms of Bala-Carter like
parameters. This will be carried out by a natural extension of the Barbasch-Vogan duality map to Weyl
group representations.

In their 1985 paper, Barbasch and Vogan define a map ηg from the nilpotent orbits of a semisimple Lie
algebra g to the nilpotent orbits of the dual Lie algebra as follows. Let X be a nilpotent element in g. Via
the Jacobson-Morozov theorem we can attach to x an S-triple {X,H, Y }. The semisimple element h of
that S-triple can be reinterpreted first as an element of (h∨)

∗
, where h∨ is a Cartan subalgebra of the dual

Lie algebra g∨, and then reinterpreted as corresponding to a particular infinitesimal character χ in Ẑ (g∨).
The nilpotent orbit in g∨ corresponding to X ∈ g is the associated variety of the maximal primitive ideal
in U (g∨) with infinitesimal character χ. We denote by ηg (OX) the nilpotent orbit in g∨ obtained in this
way from Ox = G ·X.

The map ηg : Ng −→ Ng∨ has the following remarkable properties:

Theorem 6.1 (Barbasch-Vogan). • When g is simply-laced, the map ηg coincides with the Spal-
tenstein duality map, and with natural modifications replicates the Spaltenstein duality map on
non-simply laced g. In particular, the image of ηg is precisely the set of special nilpotent orbits in
g∨.

• Suppose l∨ is a Levi subalgebra of g∨ dual to a Levi subalgebra l of g, and Ol∨ is a nilpotent orbit
in l∨. Then

(12) ηg∨

(
incg

∨

l∨ (Ol∨)
)

= indgl (ηl∨ (Ol∨))

Observation 6.2. Suppose now that Olvv = Rγ∨ is a distinguished orbit in l∨ = l∨Γ∨ . Then as we let the
pairs (Γ∨, γ∨) run over the set of Bala-Carter parameters for g∨, the left hand side of (12) runs over all the
special nilpotent orbits in g. On the right hand, we have

indglΓ

(
ηl∨
(
ind

lΓ∨
lγ∨

(0)
))

Now each of the operations in this expression has a natural analog in the setting of Weyl group representa-

tions. The Richardson orbit ind
lΓ∨
lγ∨

(0) corresponds to the Macdonald representation of WΓ∨ corresponding

to the subsystem ∆γ∨ of ∆Γ∨ . Let me denote this Macdonald representation by

j
WΓ∨
Wγ∨

(sgn (Wγ∨))

because Macdonald representations arise as special cases of a procedure known as truncated induction
that is naturally analogous to induction of nilpotent orbits, and the sign representation of Wγ∨ is the
representation of Wγ∨ that corresponds to the trivial nilpotent orbit of lγ∨ . We also replace the Barbasch-

Vogan duality map by its W -analogy, the Lusztig duality map ι : Ŵ −→ Ŵ , that sends σ to its twist by
the sign representation of W (with a few adjustments for E7 and E8). One then arrives at a map

(13) Ψ : BC (g∨) −→ Ŵ : (Γ∨, γ∨) 7−→ jWWΓ

(
ι
(
j
WΓ∨
Wγ∨

(sgn (Wγ∨))
))

and one has
Image (Ψ) = the set of special representations of W



7

That is the image of Ψ is exactly the set of representations of W that correspond to special nilpotent orbits
via the Springer correspondence.

7. An Intermediary Result and a Conjecture

Now although we have introduced the special representations as those representations of W that correspond
to special nilpotent orbits via the Springer correspondence, it should be pointed out that the notition of
a special representation of W was originally defined in a completely W -intrinsic way [Lusztig]. Similarly,
the notion of a special orbit was originally defined by allowing (a modification of) the partition-transpose
operation to act on the partitions that parameterized the nilpotent orbits. The special orbits were defined
as corresponding to the image of this action on the parameter space. In short, originally there was an
orbit-centric notion of special orbits and a Weyl-group-centric notion of special representations and one
of the first achievements of the Springer Correspondence was to provide a direct link between these two
independent notions of special-ness.

In contrast, to this day, the notion of an orbit representation of W rests entirely on the Springer parame-
terization of W . The main result to be presented here is a completely W -centric characterization of orbit
representations.

This will be quite easy, as basically all we have to do is expand the domain of the map Ψ (and then prove
that the image of the new map coincides with the set of orbit representations).

We first note that the condition (10) for γ to be a distinguished subset of Γ still makes sense even if Γ is
not a subset of Π. In particular, it makes sense when Γ is a subset of Πe. It’s just that the pair (Γ, γ)
will no longer correspond to a nilpotent orbit (as there is no notion of orbit induction for generalized Levi
subalgebras). On the other hand, the each of the objects and operations in (13) continue to make sense
whenever Γ is a Coxeter base for a subsystem of ∆ and γ is a subset of Γ.

In fact:

Theorem 7.1 (B–). Let g be a simple complex Lie algebra and let BCe (g) denote the set of pairs (Γ, γ)
where Γ ⊂ Πe and γ is a subset of Γ satisfying (10). Then the map

Ψe : BCe (g∨) −→ Ŵ : (Γ∨, γ∨) 7−→ jWWΓ

(
ι
(
j
WΓ∨
Wγ∨

(sgn (Wγ∨))
))

is well-defined and

image (Ψe) = Ŵorbit

This result allows one to separate the notion of orbit representation from the Springer parameterization.
However, this map does not provide a parameterization of the orbit representations, it only locates them

in Ŵ in a completely W -centric way. On the other hand, having an W -intrinsic characterization of orbit
representations may be enough to set up a W -intrinsic parameterization of the orbit representations. For
the following seems to be true:

Conjecture 7.2 (B–). Let (Γ, γ) ∈ BC, the set of combinatorial Bala-Carter parameters for g.

(14) φΓ,γ = unique orbit representation occuring in indWWΓ

(
jWG

Wγ
(sgn (Wγ))

)
of highest degree

Then
φγ,γ = Springer

(
O(Γ,γ)

)
Remark 7.3. This is true for the exceptional Lie algebras. I haven’t actually tried proving this for the
classical case. Rather I have instead been tantalized by the prospect of understanding the right hand side
of (14) as arising from some kind of cohomological construction of Weyl group representations You see, the
induced module

MΓ,γ = indWWΓ

(
jWG

Wγ
(sgn (Wγ))

)
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contains a whole lot of junk besides the desired orbit representation. There are lots of orbit representations
of lower degree and lots of non-orbit representations of higher degree inside MΓ,γ . The conjecture does
provide a simple rule for singling out the desired orbit representation from all the junk, but in order to
apply it you have to know all the orbit representations and their degrees. While we can get this information
in a W -intrinsic way from the construction of Theorem 7.1, this still falls a bit short of what we really
want: a direct construction of orbit representations from the Bala-Carter parameters of their corresponding
orbits.
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